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Abstract—Python is a popular dynamic programming lan-
guage, evidenced by its ranking as the second most commonly
used language on GitHub. However, its dynamic type system
can lead to potential type errors, leading researchers to ex-
plore automatic type inference approaches for Python programs.
Existing type inference approaches can be generally grouped
into three categories, i.e., rule-based, supervised, and cloze-style
approaches. The rule-based type inference approaches can ensure
the accuracy of predicted variable types, but they suffer from low
coverage problems caused by dynamic features and external calls.
Supervised type inference approaches, while feature-agnostic and
able to mitigate the low coverage problem, require large, high-
quality annotated datasets and are limited to pre-defined types.
As zero-shot approaches, the cloze-style approaches reformulate
the type inference problem into a fill-in-the-blank problem by
leveraging the general knowledge in powerful pre-trained code
models. However, their performance is limited since they ignore
the domain knowledge from static typing rules which reflect the
inference logic. What is more, their predictions are not inter-
pretable, hindering developers’ understanding and verification
of the results.

This paper introduces TYPEGEN, a few-shot generative type
inference approach that incorporates static domain knowledge
from static analysis. TYPEGEN creates chain-of-thought (COT)
prompts by translating the type inference steps of static analysis
into prompts based on the type dependency graphs (TDGs),
enabling language models to learn from how static analysis
infers types. By combining COT prompts with code slices
and type hints, TYPEGEN constructs example prompts from
human annotations. TYPEGEN only requires very few annotated
examples to teach language models to generate similar COT
prompts via in-context learning. Moreover, TYPEGEN enhances
the interpretability of results through the use of the input-
explanation-output strategy, which generates both explanations
and type predictions in COT prompts. Experiments show that
TYPEGEN outperforms the best baseline Type4Py by 10.0% for
argument type prediction and 22.5% in return value type predic-
tion in terms of top-1 Exact Match by using only five examples.
Furthermore, TYPEGEN achieves substantial improvements of
27% to 84% compared to the zero-shot performance of large
language models with parameter sizes ranging from 1.3B to 175B
in terms of top-1 Exact Match.

Index Terms—type inference, chain-of-thought, generative
model

I. INTRODUCTION

With the boom of artificial intelligence and data science,
Python is becoming increasingly popular in recent years. As a
dynamically typed programming language, Python is famous
for its convenience and usability. The dynamic type system
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makes it possible to reuse the same code snippets for differ-
ent functionalities, which significantly improves development
efficiency. However, this convenience comes with a cost. The
dynamic type system poses a threat to the reliability of Python
software by introducing more type errors. Oh et al. [31]
find that 30% of questions raised by developers at GitHub
and Stack Overflow are related to type errors. To reduce
potential type errors, Python Software Foundation introduces
type annotations in a series of Python Enhancement Proposals
(PEPs) [19], [20], [43], [53]. Manually annotating types for
each variable in Python programs is overwhelming, so many
automatic type inference approaches [1], [15], [27], [35], [37]
are proposed to infer types statically to release the burden of
developers. Automatic type inference approaches work along
with static type checkers [29], [38]–[40] to detect potential
type errors for Python programs [31], [36].

The earliest proposed automatic type inference approaches
are rule-based, as described in previous work [2], [5], [7], [10],
[17], [33]. These approaches rely on pre-defined typing rules
and static analysis to accurately infer types. However, they are
limited by the low coverage problem since the types of many
variables in Python programs cannot be resolved statically.

Inspired by the remarkable achievements of deep learning
in the natural language processing (NLP) field, supervised
type inference approaches [1], [18], [27], [37], [47] take the
code context of the target variable as input and leverage deep
learning models to classify the context into one type. They
can naturally avoid the low coverage problem of rule-based
approaches, as deep learning models are feature-agnostic and
make predictions based on probability rather than rules. Taking
advantage of identifiers in code, supervised type inference
approaches are quite effective after training on a large dataset
of annotated code. Despite the effectiveness, supervised type
inference approaches based on classification methods classify
inputs into pre-defined type categories and perform badly on
rare types. Peng et al. [34] propose a hybrid type inference
approach HiTyper to mitigate these problems by using deep
learning models to recommend type predictions for static anal-
ysis. However, deep learning models in supervised approaches
require large high-quality datasets of type annotations, which
needs substantial human efforts.

Cloze-style type inference approaches [8], [9], [13], [14],
[45] transform the type inference problem into a fill-in-the-
blank problem by adding masks on the locations of type
annotations in code. These approaches are well-aligned with
the pre-training objectives of pre-trained code models and do



not require large datasets, making them suitable for zero-shot
settings. However, they face the following challenges:

1) Lack of static domain knowledge. Cloze-style approaches
are characterized by the insertion of masks in source code,
allowing pre-trained code models to predict the missing type
information. While they have the advantage of not requiring
large datasets, unlike supervised approaches, they rely solely
on the general knowledge that pre-trained code models acquire
during the pre-training phase. Consequently, their performance
may be suboptimal, as they lack an understanding of how types
are constructed based on typing rules.

2) Lack of interpretability. Current learning-based type
inference approaches, including supervised and cloze-style
approaches, adopt the input-output methodology, taking code
as input and outputting single types. However, they provide
no idea about how deep learning models reach the output
types from the input code. This lack of transparency makes
it challenging for developers to comprehend and validate the
predicted types, particularly when there are insufficient static
constraints.

Our work. We propose TYPEGEN, the first few-shot gener-
ative type inference approach for Python programs. TYPEGEN
has four phases, including code slicing, type hint collection,
chain-of-thought (COT) prompt construction, and type gen-
eration. In the code slicing phase, TYPEGEN generates type
dependency graphs (TDGs) and builds code slices based on
TDG as the contexts of target variables, i.e., the variables
whose types need to be inferred. In the type hints collection
phase, TYPEGEN collects all available user-defined types and
third-party types as type hints via import analysis to provide
additional knowledge that does not exist in code slices. In
the COT prompt construction phase, TYPEGEN translates the
inference steps of static analysis for target variables into a COT
prompts [46]. The code slices, type hints and COT prompts
generated in the first three phases are combined as the example
prompts, which provides rich static domain knowledge. In the
last type generation phase, TYPEGEN adopts the in-context
learning (ICL) methodology and constructs the input prompt
by concatenating several example prompts and the target
variable prompt, which includes code slice as well as type
hints of the target variable. A language model is then invoked
to complete the input prompt with the COT prompt of the
target variable. With both explanations and predicted types
in the generated COT prompts, TYPEGEN can improve the
interpretability of results.

We evaluate TYPEGEN on the widely-used ManyTypes4Py
dataset [26]. Our experiment results show that TYPEGEN
outperforms the most advanced baseline Type4Py [27] by
10.0% for argument types and 22.5% for return value types
in terms of top-1 Exact Match. Furthermore, we observe that
TYPEGEN can achieve improvements of 27% ∼ 84% over
the zero-shot performance of language models with parameter
sizes ranging from 1.3B to 175B in terms of top-1 Exact
Match, which are 2× ∼ 3× of the improvements achieved by
the standard ICL method without static domain knowledge.

Contributions. We summarize our contributions as follows.

• To the best of our knowledge, we propose the first few-
shot generative type inference approach named TYPE-
GEN for Python.

• We propose a novel prompt design to incorporate different
static domain knowledge into language models, which
includes code slices, type hints, and COT prompts.

• Extensive experiments demonstrate the effectiveness of
TYPEGEN compared with supervised and cloze-style
type inference approaches, as well as the capability of
TYPEGEN on language models with different parameter
sizes.

II. BACKGROUND AND RELATED WORK

We classify existing type inference approaches into three
categories: rule-based, supervised and cloze-style approaches,
and present an overview of three kinds of type inference
approaches in Fig. 1.

A. Rule-based Type Inference

Rule-based approaches for type inference rely on predefined
rules to determine the types of variables. Fig. 1(1) shows
an example where four rules are associated with the type
inference of variable a. Each rule has premises (above the
line) and conclusions (below the line). A rule can be triggered
only if all premises are known, and then the result type is
given based on the conclusion.

To address the need for static type hints in dynamically
typed programming languages, various approaches have been
proposed for type inference and checking, such as Pyright [39]
and Pylance from Microsoft, Pyre from Meta [38], Py-
type from Google [40], and Python’s official type checker
mypy [29]. In addition to industry tools, some academic
approaches have been proposed for type inference in different
programming languages, such as Python and JavaScript [2],
[5], [7], [10], [17], [33]. While these approaches are quite
accurate, they are limited by the low coverage problem caused
by dynamic features and external calls [34].

B. Supervised Type Inference

Supervised type inference approaches utilizing deep learn-
ing models have made significant progress in predicting types
for dynamic languages. Fig. 1(2) illustrates the typical process
of these approaches: features are extracted from code and
encoded into vectors using deep learning models such as
recurrent neural networks (RNNs) [42]. A classifier is then
used to classify the vectors into pre-defined types. The loss
is calculated based on the type prediction of the classifier
and the human type annotation, and the parameters of the
deep learning models and classifier are updated via back-
propagation.

Allamanis et al. [1] adopt an open vocabulary model
which encodes code as graphs to predict types. Pradel et al.
[37] uses multiple RNN models to encode features such as
identifiers and code tokens. Mir et al. [28] improve the top-
1 accuracy via a deep similarity clustering algorithm. Wei
et al. [48] propose to use graph neural networks to predict
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Fig. 1: Three kinds of type inference approaches.

Python Code: [Code]

Available User-defined Types: [User-defined types from static analysis]

Q: What's the type of the variable [name]?

A: [To be generated]

Q: What''s the type of the variable DATABASES?

Python Code:

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.sqlite3',
        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
    }
}
DATABASES['default'].update(db_from_env)

Available User-defined Types:

os.Mapping, os.MutableMapping, os.PathLike, os._AddedDllDirectory, os._Environ, os._wrap_close

A: First, the variable DATABASES is assigned from a dict. Second, the key of the dict is a str. The value
of the dict is a dict. Third, the keys of the dict are a str and a str. The values of the dict are a str and a
function call os.path.join. Therefore, the type of the variable DATABASES is `dict[str, dict[str, str]]`.

Example Prompt: 

Target Variable Prompt: +

①. Code Slice

②. Type Hint

③. COT Prompt

①. Code Slice

②. Type Hint

Fig. 2: Input prompt with example from the code in Fig. 4.

types. Jesse et al. [18] propose TypeBERT by reformulating
type prediction as a NER problem. Peng et al. [35] propose
HiTyper, which uses deep learning models to recommend types
for static inference. While these approaches achieve satisfying
performance, they require high-quality datasets for training,
which can be difficult to obtain in the wild. Furthermore,
supervised type inference approaches only provide predictions
without any explanation about how they infer the types,
making it challenging for developers to understand and verify
the results.

C. Cloze-Style Type Inference

To enhance the reliability of Python software and prevent
potential type errors, the Python Software Foundation has
introduced a series of Python Enhancement Proposals (PEPs)
[19], [20], [43], [53] that enable developers to add static type
annotations to their code. As these annotations become part
of the code, they can be leveraged by pre-trained code models
that are trained on a vast amount of open-source Python
programs. Cloze-style type inference approaches, as illustrated
in Fig.1(3), add masks on the locations of type annotations in
the code and invoke pre-trained code models to fill in the
masks with predicted types.

All pre-trained code models with Masked Language Mod-
eling (MLM) training objectives such as CodeBERT [8],
GraphCodeBERT [14] and CodeT5 [45] can be naturally used
to predict type annotations. Most recently, UniXcoder [13] is
a unified cross-modal pre-trained model to support both code-
related understanding and generation tasks. InCoder [9] is a
large code generative model that can refill arbitrary regions
of code. Leveraging pre-trained code models, cloze-style type
inference approaches can be readily implemented. However,
they still exhibit limited performance as they solely rely on
the general knowledge of pre-trained code models. These ap-
proaches can hardly handle complicated types without domain
knowledge from static typing rules, and their predictions lack
interpretability without explanations.

III. GENERATIVE TYPE INFERENCE

A. Overview

As a generative approach, TYPEGEN first generates domain
knowledge-aware prompts and then inputs them into language
models for type prediction. To achieve this, TYPEGEN adopts
the widely-used in-context learning methodology [6]. This
methodology provides a few example questions and answers
as demonstrations for the language model and then asks the
answer for a new question. Leveraging this methodology,
TYPEGEN constructs the input prompt by adding some domain
knowledge-aware example prompts (example questions and
answers) before the target variable prompt (new question).
Fig. 2 illustrates an input prompt with an example from the
code in Fig. 4. The domain-aware example prompts include
three parts: code slice, type hint and COT prompt, as shown in
Fig. 2. They are designed to incorporate different static domain
knowledge for language models. Specifically, the code slice
isolates the statements contributing to the construction of the
type for the target variable, with the remaining unrelated state-
ments removed. The type hint includes external knowledge
that is specific to different code slices, including user-defined
types and third-party types. The COT prompt indicates the
inference steps of static analysis, aiming at teaching language
models how to infer types. The target variable prompt contains
only the code slice and the type hint of the target variable.
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Fig. 3: The overview of TYPEGEN.

We provide an overview of TYPEGEN’s workflow in Fig. 3.
To start, TYPEGEN takes a set of annotated Python source files
to select examples and a target Python source file where the
target variable is located. For each target source file, TYPE-
GEN generates an input prompt that incorporates domain-
aware example prompts and the target variable prompt. A
language model is then employed to produce the COT prompt,
which includes both the predicted type and corresponding
explanations. To generate domain-aware example prompts,
TYPEGEN conducts three phases: (1) code slicing, (2) type hint
collection, and (3) COT prompt construction to generate the
code slice, type hint, and COT prompt, respectively. Finally, in
the (4) Type Generation phase, TYPEGEN leverages in-context
learning to infer the types of target variables.

B. Code Slicing
The code slicing phase aims at identifying the code state-

ments related to the target variable based on the type depen-
dency graph (TDG) which indicates the type dependencies
among variables [35].

1) TDG Generation: In order to extract the type depen-
dencies of the target variable, TYPEGEN generates type de-
pendency graphs (TDGs) using HiTyper [35]. A TDG is a
directed graph (N,E), where N is the node set and E is the
edge set. Each node n ∈ N in TDG represents a variable
(symbol node), an operation (operation node), or a type (type
node), while each edge e ∈ E indicates that the type of the
output node depends on the type of the input node. If the target
variable is an argument, a return value or a local variable in
the function, TYPEGEN generates the TDG for the specific
function. Otherwise, if the target variable is a global variable,
TYPEGEN generates the TDG for all statements in the source
file except class definitions and function definitions. To better
illustrate the code slicing phase, we give a code example in
Fig. 4 and its sliced TDG in Fig. 5, where the target variable
is “DATABASES”.

To refine the initial TDG, TYPEGEN prunes the nodes that
do not have any type dependency with the target variable. For
instance, in the code presented in Fig.4, TYPEGEN removes

...
12 import os
...
25 DEBUG = bool( os.environ.get('DJANGO_DEBUG', True) )
27 ALLOWED_HOSTS = ['stepper-v2.herokuapp.com', '127.0.0.1']
...
71 DATABASES = {
72    'default': {
73        'ENGINE': 'django.db.backends.sqlite3',
74        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
75    }
76 }
...
129 db_from_env = dj_database_url.config(conn_max_age=500)
130 DATABASES['default'].update(db_from_env)
...

Fig. 4: The source code for the example prompt in Fig. 2,
where DATABASES is the target variable.

the nodes generated from statements at lines 25, 27, 129,
etc. TYPEGEN then merges identical symbol nodes that are
directly connected, since they represent different occurrences
of the same variable. To generate the sliced TDG, TYPEGEN
locates the sub-graph where the target variable is defined in the
refined TDG. For the example in Fig.4, TYPEGEN identifies
the target variable node “DATABASES” at line 71 and extracts
the reachable sub-graph of the refined TDG as the sliced TDG,
as illustrated in Fig. 5.

2) Code Slice Generation: Using the sliced TDG, TYPE-
GEN generates a code slice from the original input source
code, containing only the statements that have type dependen-
cies with the target variable. In this way, TYPEGEN reduces
the entire function into a smaller code slice that includes only
the information relevant to the type inference of the target
variable. TYPEGEN employs different strategies for generating
code slices for local variables, return values, and arguments.

Local Variables and Return Values. To generate code
slices for local variables and return values, TYPEGEN lever-
ages the clear definitions that indicate how their types are con-
structed in the code. TYPEGEN initiates the process by starting
from the definition node of the target variable and traversing
backward on the TDG, i.e., in the opposite direction to the
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Fig. 5: The sliced type dependency graph (TDG) of code in
Fig. 4.

TDG edges, to include all the nodes that contribute to the
definition of the target variable. The distance of each node
from the target variable node is determined by the number
of edges (hops) between them. A maximum threshold is also
set to prevent infinite loops, and any nodes with distances
exceeding the threshold are removed. Once the traversal is
completed, TYPEGEN combines the corresponding statements
of the remaining nodes in the TDG to form the code slice.

Arguments. To facilitate the generation of code slices for
function arguments, TYPEGEN adopts a different approach,
since arguments do not have explicit definitions. TYPEGEN
collects the usages of function arguments, as variable usages
often provide hints about their types. For instance, operations
such as open are usually associated with File types. Thus,
TYPEGEN begins with all nodes of the target argument and
traverses forward on the TDG, i.e., in the same direction
as the TDG edges, to include nodes that use the target
argument. TYPEGEN generates code slices for nodes with
distances within a specified maximum threshold, similar to
local variables and return values.

C. Type Hints Collection

Unlike built-in types that are available in every source
file, user-defined and third-party types are specific to each
source file and are defined through class definitions and import
statements. However, general knowledge bases in language
models do not cover this specific domain knowledge [35]. To
address this issue, TYPEGEN collects all the user-defined and
third-party types that are imported to the current source file
as type hints.

To identify user-defined types, TYPEGEN performs an im-
port analysis on the current source directory. First, it collects
all class definitions in the current source file as user-defined
types. Then, it examines the import statements to determine
which source files are imported in the current file and adds
their class definitions to the list of user-defined types. For
third-party types, following previous study [51], TYPEGEN
downloads the top 10,000 popular Python packages ranked
by libraries.io [23] and employs the same import analysis
technique to identify third-party types. All third-party types
collected by TYPEGEN are stored in a database, which can

TABLE I: Chain-of-Thought Prompt Template. [NAME] indi-
cates the name of symbol nodes, [OP] indicates the name of
operation nodes and [TYPE] indicates the name of type nodes.
[GTTYPE] indicates the annotated type for the target variable.
DD-RV and DD-A indicate the dependency description for
local variables and return values, and arguments, respectively.

Part Type Template

DD-RV

Operation→Symbol
The variable/return value of [NAME]
is assigned from [OP] operation.

Symbol→Symbol
The variable/return value of [NAME]
is assigned from variable [NAME].

Type→Symbol
The variable/return value of [NAME]
is assigned from [TYPE].

Operation→Operation
The operand(s)/target(s)/key(s)/value(s)
of [OP] is/are [OP] operation.

Symbol→Operation
The operand(s)/target(s)/key(s)/value(s)
of [OP] is/are variable [NAME].

Type→Operation
The operand(s)/target(s)/key(s)/value(s)
of [OP] is/are [TYPE].

DD-A

Usage
The argument [NAME] is used
in [OP]/[NAME].

Naming
Based on the naming convention,
it is reasonable to assume that the type of
the argument [NAME] is [GTTYPE].

Con Conclusion
Therefore, the type of the variable/return
value of/argument [NAME] is [GTTYPE].

be queried by TYPEGEN to identify the available third-party
types based on the import statements in the current source file.

When generating type hints, TYPEGEN analyzes all the
import statements in the current source file. If a user-defined
package is imported, TYPEGEN directly conducts import
analysis to gather all available user-defined types. If a third-
party package is imported, TYPEGEN queries the database and
obtains all available third-party types. All available types are
concatenated to build the type hint, with an example shown in
Fig. 2 (highlighted in orange color). To prevent excessively
long type hints, TYPEGEN imposes a maximum threshold
(set to 50 in this paper) for the number of collected types.
Considering the scarcity of user-defined types, TYPEGEN
prioritizes the importance of types based on the following
order: “user-defined types in current source file > user-defined
types in other source files > third-party types”.

D. Chain-of-Thought Prompt Construction

TYPEGEN translates the type inference steps of static analy-
sis into chain-of-thought (COT) prompts [46] to involve static
domain knowledge of how a type is constructed, where a COT
is a series of intermediate reasoning steps [46]. To generate
COT prompts, TYPEGEN utilizes the sliced TDG produced by
the code slicing phase.

Given the sliced TDG, TYPEGEN first organizes the nodes
into different hops according to their distance from the target
variable node. The hop of the node of the target variable is
set to 0, and the hops of other nodes are determined by their
distance, as shown in Fig. 5. The COT prompt constructed
by TYPEGEN includes dependency description and conclu-
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sion. The dependency description explains how the type is
inferred, whereas the conclusion gives the final type prediction.
TYPEGEN translates each hop in the TDG into a sentence of
dependency description and generates the conclusion based
on the annotated types from developers. Following the recent
study [52], we summarize the powerful templates of COT
prompts from the zero-shot outputs of language models and
present them in Table I. For the conclusion, TYPEGEN fills
in the variable name and annotated type into the template.
Regarding the dependency description, TYPEGEN employs
different prompt templates for local variables, return values,
and arguments as TYPEGEN utilizes different information for
them in the sliced TDGs in Sec. III-B2.

Local Variables and Return Values. Local variables and
return values have clear definitions in the code, so it is
possible to construct a comprehensive description of how the
type of target variable should be inferred. To construct the
dependency description for them, TYPEGEN starts with the
edges connected to the target variable node and traverses
backward on the TDG to translate each edge into a sentence
of dependency description. Since there are three major types
of nodes in the TDG, we design six templates for six kinds of
edges in TDG to generate dependency descriptions, as shown
in the first part of Table I. Note that the type node cannot be
the output node as its type does not depend on other nodes.
Take the TDG in Fig. 5 as an example. There is an edge
from operation node Dict Read to symbol node DATABASES.
For this edge, TYPEGEN adopts the Operation→Symbol tem-
plate and generates a sentence “The variable DATABASES is
assigned from a dict”. There is also an ordinal number at
the beginning of each sentence to indicate one inference step.
Sentences generated from all edges are concatenated together
according to the backward traversal order to form a complete
dependency description.

Arguments. As arguments usually do not have clear def-
initions in the code, it is difficult for static analysis to infer
their types. Rather than providing solid definition information,
TYPEGEN provides usage and naming information as hints for
type prediction. We present the usage template and naming
template in the second part of Table I. For usage information,
TYPEGEN collects all nodes in the sliced TDG and constructs
the sentence “The argument ... is used in ...”. For the naming
information, TYPEGEN adds the sentence “Based on the
naming convention, it is reasonable to assume that the type of
the argument is ...” to remind language models to consider
the argument name. These two sentences form a complete
dependency description for arguments.

The generated dependency description and conclusion are
finally combined together to form a complete COT prompt.
Fig. 2 shows the COT prompt generated by TYPEGEN for the
code example in Fig. 4, highlighted in green color.

E. Type Generation

For each input source file and target variable, TYPEGEN
generates its corresponding code slice and selects a set of
code slices from the training set as examples based on BM25

TABLE II: The statistics of the ManyTypes4Py dataset. ‘Arg”
indicates function arguments, “Ret” indicates function return
values, “Var” indicates global and local variables, “Ele” in-
dicates elementary types, “Gen” indicates generic types, and
“Usr” indicates user-defined types and third-party types.

Dataset Total Arg Ret Var Ele Gen Usr

Training
Set

242,954 48,461 22,034 172,459 128,006 67,185 47,763
100% 20.0% 9.1% 70.9% 52.7% 27.6% 19.7%

Test
Set

85,205 16,700 7,754 60,751 44,605 23,310 17,290
100% 19.6% 9.1% 71.3% 52.5% 27.4% 20.1%

Sampled
Test Set

10,000 1,995 914 7,091 5,199 2,748 2,053
100% 20.0% 9.1% 70.9% 52.0% 27.5% 20.5%

similarity [41]. BM25 similarity calculates the token similarity
between two code slices and has been widely used in recent
studies [12], [21]. Following previous work [24], the exam-
ple prompts are ordered based on the BM25 similarity of
code slices: {EP1, ..., EPn}(∀i ∈ [1, n) BM25(EPi, TP ) ≤
BM25(EPi+1, TP )) where EP is an example prompt and
TP is the target variable prompt. The example prompts are
then combined with the target variable prompt to form the
complete input prompt, as shown in Fig. 2.

Given the examples in the input prompt, language models
can learn to generate a similar COT prompt for the target
variable. To facilitate the automatic evaluation of the generated
COT prompts, TYPEGEN surrounds type predictions in exam-
ple COT prompts with quotes, such as d̀ict[str, dict[str, str]]ı̀n
Fig. 2. This allows language models to learn to emphasize
type predictions in generated COT prompts by adding quotes.
Ultimately, TYPEGEN extracts the content within the quotes
as the types predicted by the language models.

IV. EXPERIMENT SETUP

A. Dataset

We follow previous work [28], [35] and evaluate our ap-
proach on the ManyTypes4Py dataset [26] by splitting the
dataset into a training set and a test set with an 80:20 ratio.
We use the training set to train the baseline models and
select examples for TYPEGEN and evaluate the performance
of TYPEGEN and baselines in the test set. In order to ac-
commodate the computational resource limitations, we further
sample 10,000 instances from the test set during the evaluation
of large language models. Table II presents the statistics of the
experimental datasets.

B. Baselines

We choose the following four type inference approaches as
our baselines:

• TypeBERT [18] is a supervised type inference ap-
poroach. It reformulates the type inference problem into
a Named Entity Recognition (NER) problem and regards
types as labels.

• TypeWriter [37] is a supervised type inference approach.
It extracts different code features, such as identifiers
and code tokens, and utilizes four RNNs to encode the
extracted features and make type predictions.
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TABLE III: The statistics of language models used in the
evaluation.

Model #Parameters Training Dataset Type

CodeT5 220M/770M
CodeSearchNet

& BigQuery
Generative
& Infilling

UniXcoder 126M CodeSearchNet Infilling
GPT-Neo 1.3B/2.7B The Pile Generative

InCoder 1.3B/6.7B
GitHub &

Stack Overflow
Generative
& Infilling

CodeGen 6B
The Pile, BigQuery

& GitHub
Generative

GPT-J 6.7B The Pile Generative
GPT-3.5 175B - Generative
ChatGPT 175B - Generative

• Type4Py [28] is a supervised type inference approach. It
builds different type clusters and classifies a new Python
program into one of the type clusters to determine the
type.

• HiTyper [35] is a hybrid type inference approach. It
builds a type dependency graph (TDG) for each target
variable and utilizes both static analysis and neural pre-
diction to fill the blanks in the TDG and finally outputs
the validated types.

We choose three popular pre-trained code models, including
CodeT5 [45], UniXcoder [13], and InCoder [9] to represent the
performance of cloze-style type inference approaches. Besides,
we choose GPT-Neo [3], GPT-J [44], CodeGen [30], GPT-
3.5 [4] and ChatGPT [32] to evaluate the performance of
TYPEGEN on language models with different parameter sizes.
We present the statistics of all the language models in Table III.

C. Metrics

We use two commonly used metrics in previous work [1],
[28], [35] to evaluate the performance of TYPEGEN and other
baselines:

• Exact Match is defined by the ratio of type predictions
made by an approach that exactly match type annotations
from developers.

• Match to Parametric is defined by the ratio of type
predictions made by an approach that share the common
outmost type with type annotations from developers.

For example, List[int] and List[str] are considered Match to
Parametric but not Exact Match since they are different types
while sharing the same outmost type List.

D. Implementation

For the four type inference baselines TypeBERT [18],
TypeWriter [37], Type4Py [28] and HiTyper [35], we directly
use the replication packages released by the authors and other
researchers. For all the language models except GPT-3.5 and
ChatGPT, we download them from HuggingFace Hub [16]
and deploy them locally. Following the previous work [28],
[35], we adopt the generated sentences with top-5 probabilities
as predictions. For GPT-3.5 and ChatGPT, we use the public
APIs provided by OpenAI under engine “text-davinci-003”

and “gpt-3.5-turbo-0301”, respectively. We acquire 50 samples
with a temperature of 1.0 for each target variable and rank
the top-5 predictions according to the occurrence frequency,
following the work [49], [50]. We choose the maximum
distance threshold of TDG nodes at 3 for the code slicing
phase of TYPEGEN, as previous studies [1], [28] only consider
types with nested levels smaller than 3. All experiments are
conducted on a Linux machine (Ubuntu 18.04) with one 112-
core Intel Xeon Gold 6348 CPU@ 2.60GHz, two NVIDIA
A100-80GB GPUs, and 1TB RAM.

V. EVALUATION

A. Research Questions

In the evaluation, we focus on the following four research
questions:

• RQ1: How effective is TYPEGEN in type inference
compared with existing approaches?

• RQ2: How capable is TYPEGEN in language models with
different parameter sizes?

• RQ3: What are the impacts of different parts in the
prompt design of TYPEGEN?

• RQ4: What are the impacts of different examples in
TYPEGEN?

To study RQ1, we conduct experiments on both TYPEGEN
and baseline approaches with the entire test set (85,205 in-
stances), aiming to comprehensively verify the effectiveness of
TYPEGEN against state-of-the-art type inference techniques.
However, due to limited computational resources, we only use
the sampled test set (10,000 instances) for RQ2-4. For RQ2,
we evaluate six language models under TYPEGEN to examine
the tool’s effectiveness across language models with different
parameter sizes. We also include two additional settings: Zero-
Shot and Standard ICL. In the Zero-Shot setting, we do not
provide any example and only use the source code of the target
variable as the input prompt for language models in the type
prediction. The Zero-Shot setting tests the basic performance
of language models on type prediction. In the Standard
ICL setting, we provide three fixed example prompts before
the target variable prompt and use only source code in the
input prompts, which is the same with recent study [22].
The Standard ICL setting indicates the basic performance of
language models with the in-context learning methodology. To
fairly compare TYPEGEN with the Standard ICL setting, we
also set the number of examples in TYPEGEN to 3 in RQ2.
For RQ3, we remove different parts of the prompt design
in TYPEGEN to study the impacts of each part. For RQ4,
we vary the number of examples and the example selection
method to investigate the impacts of different examples. We
choose ChatGPT as the base model of TYPEGEN and use five
examples in TYPEGEN in all the RQs except RQ2.

B. RQ1: Effectiveness of TYPEGEN

1) Comparison with Supervised Approaches: We compare
TYPEGEN with three supervised type inference approaches,
namely TypeBERT, TypeWriter, and Type4Py. The results
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TABLE IV: The performance of TYPEGEN along with the baselines under four types of variables in terms of Top-1,3,5 Exact
Match (%) and Match to Parametric (%). “Arg”, “Ret”, “Var”, and “All” indicate function arguments, function return values,
global and local variables, and all of above, respectively. Under each metric the best performance is marked as gray .

Metric Category Approach Top-1 Top-3 Top-5

Arg Ret Var All Arg Ret Var All Arg Ret Var All

Exact
Match

(%)

Supervised
TypeBERT 28.0 38.5 51.1 45.4 34.8 52.6 55.8 51.4 36.5 57.1 58.6 54.1

TypeWriter 53.3 52.8 - - 61.1 60.7 - - 65.8 65.3 - -

Type4Py 66.5 56.1 82.0 76.6 72.0 59.2 83.8 79.3 73.8 60.7 84.3 80.1

Cloze
Style

InCoder-1.3B 20.9 20.5 15.1 16.7 21.3 20.8 15.5 17.1 21.3 21.0 15.6 17.2

InCoder-6.7B 24.1 42.0 18.7 21.9 24.6 42.7 19.1 22.3 24.7 43.1 19.2 22.4

UniXcoder 55.0 49.2 35.9 40.9 66.9 64.6 42.1 49.0 70.6 69.8 45.2 52.4

CodeT5-base 51.1 57.6 21.7 30.7 59.3 64.4 28.0 37.4 62.0 66.9 30.7 40.1

CodeT5-large 56.2 60.2 44.7 48.4 61.6 64.5 50.4 53.9 63.9 66.3 53.4 56.6

Generative TYPEGEN 73.1 68.7 82.2 79.2 81.0 77.1 87.9 85.6 82.7 79.1 89.1 87.0

Match to
Parametric

(%)

Supervised
TypeBERT 29.8 41.4 54.0 48.1 36.0 55.9 58.0 53.5 37.7 60.8 61.2 56.5

TypeWriter 54.4 54.1 - - 63.4 63.5 - - 68.8 69.3 - -

Type4Py 68.0 59.0 86.2 80.2 74.1 64.1 88.3 83.3 75.9 66.3 88.8 84.3

Cloze
Style

InCoder-1.3B 22.9 22.8 18.7 19.9 23.3 23.1 19.1 20.3 23.4 23.3 19.2 20.4

InCoder-6.7B 28.8 51.6 25.0 28.1 29.3 52.1 25.3 28.5 29.4 52.5 25.3 28.6

UniXcoder 61.9 61.8 44.3 49.3 72.3 76.0 51.2 57.6 75.0 80.1 53.8 60.4

CodeT5-base 54.8 66.7 27.7 36.6 62.9 74.2 34.4 43.6 65.6 76.4 37.1 46.3

CodeT5-large 61.4 69.4 55.7 58.0 66.8 74.3 61.2 63.5 68.9 76.2 63.7 65.9

Generative TYPEGEN 78.7 75.6 91.2 87.3 84.9 83.0 93.7 91.0 86.1 84.5 94.1 91.7

TABLE V: The performance of HiTyper with different base
models under four types of variables. Variable categories are
the same with Table IV.

Metric Base Model Arg Ret Var All

Exact
Match

(%)

- 8.0 43.5 65.7 52.4

Type4Py 73.5 73.4 90.6 85.7

TYPEGEN 84.9 77.9 90.5 88.3

Match to
Parametric

(%)

- 8.4 52.7 70.2 56.5

Type4Py 76.1 83.4 95.3 90.1

TYPEGEN 87.4 87.3 95.3 93.1

are presented in Table IV, where we report the top-1, top-
3, and top-5 Exact Match and Match to Parametric for four
categories of variables. It is worth noting that TypeWriter is
designed solely for argument and return value type predictions.
Analyzing the top-1 prediction results in Table IV, we observe
that TYPEGEN outperforms the best supervised approach,
Type4Py, by 10.0% for argument type prediction and 22.5%
for return value type prediction in terms of Exact Match.
This improvement of TYPEGEN over Type4Py is even more
significant for top-5 predictions, where TYPEGEN outperforms
Type4Py by 12.1% for argument type prediction and 30.3%
for return type prediction in terms of Exact Match. Moreover,
when considering Match to Parametric, TYPEGEN achieves a
consistent improvement of 8.7% ∼ 9.3% on overall variables
than Type4Py. These results demonstrate that, even with few
annotated examples, the generative type inference approach

TYPEGEN is more effective than supervised approaches such
as Type4Py. We also observe that TYPEGEN does not perform
much better than Type4Py on predicting local variables. This
can be attributed to the lower difficulty of type inference for
local variables compared to arguments and return values, so
static domain knowledge incorporated by TYPEGEN provides
limited improvements. This can also be verified by Table IV,
where all the supervised approaches obtained much higher
performance on local variables than arguments and return
values.

2) Comparison with Cloze-Style Approaches: We com-
pare TYPEGEN with cloze-style approaches, namely InCoder,
UniXcoder and CodeT5, and present the results in Table IV.
Our observations indicate that, in general, cloze-style ap-
proaches perform worse than supervised approaches due to
their lack of domain knowledge from data and static analysis.
By introducing five annotated examples and incorporating
static knowledge, TYPEGEN outperforms the best cloze-style
approach CodeT5-large by 63.6% on overall top-1 Exact
Match and 53.7% on overall top-5 Exact Match. This suggests
that incorporating domain knowledge from static analysis with
a few examples can largely improve the performance of type
inference.

3) Comparison in Hybrid Approach HiTyper: As HiTyper
is a hybrid approach, we study its performance with the best
supervised approach Type4Py and TYPEGEN, and present the
experiment results in Table V. For Type4Py and TYPEGEN,
we use their top-5 predictions as type recommendations since
HiTyper can reject wrong types. The results show that HiTyper
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TABLE VI: The performance of different language models
under three settings for all variables in terms of Top-1,3,5
Exact Match (%). △ indicates the improvement of Standard
ICL and TYPEGEN over the Zero-Shot setting.

Base Model Approach Top-1 (△) Top-3 (△) Top-5 (△)

GPT-Neo
(1.3B)

Zero-Shot 31.5 40.6 42.8

Standard ICL 44.0 (40%) 50.0 (23%) 50.8 (19%)

TYPEGEN 57.0 (81%) 61.5 (51%) 62.8 (47%)

GPT-Neo
(2.7B)

Zero-Shot 43.2 50.0 51.9

Standard ICL 46.6 (8%) 52.3 (5%) 52.8 (2%)

TYPEGEN 55.5 (28%) 61.9 (24%) 63.0 (21%)

GPT-J
(6.7B)

Zero-Shot 42.4 43.7 43.9

Standard ICL 50.8 (20%) 54.9 (26%) 55.3 (26%)

TYPEGEN 62.7 (48%) 67.3 (54%) 68.4 (56%)

CodeGen
(6B)

Zero-Shot 34.7 44.0 45.5

Standard ICL 54.1 (56%) 60.5 (38%) 61.9 (36%)

TYPEGEN 63.7 (84%) 69.1 (57%) 70.8 (56%)

GPT-3.5
(175B)

Zero-Shot 62.0 65.4 66.3

Standard ICL 69.7 (12%) 74.2 (13%) 75.8 (14%)

TYPEGEN 78.9 (27%) 85.0 (30%) 86.2 (30%)

ChatGPT
(175B)

Zero-Shot 61.3 66.1 67.5

Standard ICL 68.0 (11%) 71.8 (9%) 73.1 (8%)

TYPEGEN 78.8 (29%) 85.3 (29%) 86.7 (28%)

performs poorly when there is no base model, particularly in
argument type inference, where it achieves an Exact Match
of only 8%. This verifies the low coverage problem of static
analysis. When associating with base models, HiTyper with
TYPEGEN still outperforms HiTyper with Type4Py by 15.5%
for argument type inference and 6.1% for return value infer-
ence. This indicates that the performance gap of TYPEGEN
over Type4Py cannot be bridged by simply combining them
with static analysis.

Answer to RQ1: TYPEGEN outperforms the best baseline
Type4Py by 8.6% on all variables, with particularly notable
improvements of 12.1% and 30.3% for argument and return
value types, respectively, in terms of top-5 Exact Match.

C. RQ2: Capability of TYPEGEN in Different Language Mod-
els

We compare the performance of TYPEGEN on six language
models with parameter sizes ranging from 1.3B to 175B with
the Zero-Shot setting and the Standard ICL setting and present
the overall top-1,3,5 Exact Match in Table III. In the Zero-Shot
setting, our results indicate that language models with larger
model sizes generally perform better, with ChatGPT achieving
a 2× top-1 Exact Match than GPT-Neo-1.3B. When providing
language models with three fixed examples in the Standard
ICL setting, we observe an 8% ∼ 56% improvement in top-1
Exact Match, demonstrating the effectiveness of the in-context
learning methodology. For TYPEGEN, we find consistent
improvements of 27% ∼ 84% on different language models,

with the improvements being more significant for smaller
language models like GPT-Neo-1.3B than larger language
models like ChatGPT. With less general knowledge stored
in the models, smaller language models benefit more from
the domain knowledge associated by TYPEGEN. Furthermore,
the improvements achieved by TYPEGEN over the Zero-Shot
setting are 2× ∼ 3× of that achieved by the Standard ICL
setting, in terms of top-1 Exact Match. For the top-5 type
prediction, TYPEGEN even achieves a 10× of improvement
obtained by the Standard ICL setting on GPT-Neo-2.7B. These
findings demonstrate the usefulness of incorporating static
domain knowledge in the prompt design of TYPEGEN, which
cannot be outweighed by simply providing some examples.

Answer to RQ2: TYPEGEN is capable of consistently
improving the zero-shot performance of type inference for
language models with different parameter sizes and achieves
2× ∼ 3× of improvements made by the Standard ICL
setting.

D. RQ3: Impacts of Different Parts of Prompt Design

To investigate the impact of different parts of the prompt
design of TYPEGEN, we conduct an ablation study and present
the results in Table VII. The results show that removing code
slicing techniques and inputting the whole function of target
variables in the prompts leads to a significant performance
drop of 24% on overall type inference. This decrease is mainly
caused by local variables and arguments, as there is typically
only a small set of statements in the function that have type
dependencies with them, while inputting the entire function
can introduce useless information and bias the language model.
When type hints are removed, the performance of TYPEGEN
on user-defined types decreases the most (11%), indicating
the importance of providing available user-defined types as
additional knowledge for language models. Additionally, when
COT prompts are removed, the performance of TYPEGEN on
generic types drops the most (10%), as generic types usually
involve complicated type dependencies that should be well
handled by static analysis. Providing the inference steps of
static analysis in COT prompts can greatly help improve the
performance of language models on generic types.

Answer to RQ3: In the prompt design, code slicing im-
proves the overall performance of type inference by 24%,
type hints improve the performance of user-defined type in-
ference by 11%, and COT prompts improve the performance
of generic type inference by 10%.

E. RQ4: Impacts of Different Examples

To evaluate the effects of the number of examples and
example selection methods in the prompt design of TYPEGEN,
we vary the number of examples from one to nine and compare
two example selection methods: fixed examples and BM25
similarity-based examples. We present the top-5 Exact Match
results of TYPEGEN in Fig. 6.
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TABLE VII: The performance of TYPEGEN when removing
different parts of the prompt design in TYPEGEN in terms
of Top-5 Exact Match (%). “Ele”, “Gen”, and “Usr” indicate
elementary types, generic types and user-defined types as well
as third-party types, respectively. Other variable categories are
the same with Table IV.

Ablation Arg Ret Var Ele Gen Usr All

w/o Code Slice 74.8 77.0 68.8 75.1 75.5 73.9 70.8

w/o Type Hint 76.1 75.9 89.3 94.1 77.2 75.9 85.5

w/o COT Prompt 82.3 78.6 86.4 92.9 70.8 84.3 84.9

TYPEGEN 83.5 79.4 89.7 94.3 77.8 84.6 87.5
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Fig. 6: The top-5 Exact Match of TYPEGEN with different
numbers of examples and different example selection methods

Based on the results presented in Fig. 6, we observe that the
performance of TYPEGEN is largely affected by the number
of examples provided in the input prompts. Specifically, the
performance drops notably when there is only one example,
highlighting the importance of providing sufficient examples
for effective in-context learning. Additionally, the performance
of TYPEGEN using BM25 similarity-based examples increases
up to five examples, after which it starts decreasing. This
suggests that both inadequate and excessively long input con-
texts can harm the performance of TYPEGEN. When changing
the example selection method, we find that using BM25
similarity-based examples performs better than using fixed
examples, particularly when only one example is provided.
However, when we provide five examples, the performance
drop with fixed examples is relatively small (less than 1.3%).
One possible explanation is that large language models learn
how to perform type inference from the example prompts
rather than solely relying on the direct correlations between
type predictions in different example prompts [25].

Answer to RQ4: TYPEGEN achieves the best performance
with five examples. TYPEGEN shows only a small perfor-
mance drop (<1.3%) even when provided fixed examples,
releasing the burden of developers to design examples.

Python Function:
def compose_options():
    options = ["-f", compose_path("demo.yml")]
    return {"options": options, "name": "demo",
         "priority": ">base", "variant": "openedx"}
...

Generated COT Prompt:
First, the return value of compose_options is assigned from a dict. Second,
the keys of the dict are a str, a str, a str, and a str. The values of the dict are
options, a str, a str, and a str. Third, options is assigned from a list.
Therefore, the type of the return value of compose_options is `dict[str,
typing.Union[str,list[str]]]`.

Fig. 7: A function whose return value type can only be inferred
by TYPEGEN. The type annotation for the return value is
Dict[str, Union[str, List[str]]].

VI. DISCUSSION

A. Interpretability of TYPEGEN

To better illustrate the interpretability of COT prompts
generated by TYPEGEN, we give an example of a function
whose return value can only be inferred by TYPEGEN in
Fig. 7. Due to the page limitation, we only present the code
slice and the generated COT prompt. To infer the return
type of function compose options, TYPEGEN follows similar
inference steps as static analysis. First, it infers that the return
value is assigned from a dictionary in the generated COT
prompt. Then it identifies the types of keys and values by
specifying that there are four keys in the dictionary with types
of str, and there are three values with types of str as well as
one variable named options. The second step in the generated
COT precisely matches the code given in the input prompt,
indicating that large language models like ChatGPT have the
capacity to simulate the inference steps of static analysis.
In the third step of the generated COT prompt, TYPEGEN
recognizes the unknown variable options and locates its as-
signment from a list. Since we set the maximum number of
hops to 3, TYPEGEN generates the conclusion directly after the
third step. From this example, we can find that by providing
an explanation in the COT prompt, human developers can
easily understand the predictions and determine whether the
predictions are correct based on the explanations.

B. Limitations of TYPEGEN

Despite the effectiveness of TYPEGEN, we also identify the
following limitations:

1) Limited context. Although TYPEGEN adopts static code
slicing techniques based on TDGs, we have observed a limited
number of instances in the test set (∼ 1000) with code
slices exceeding the maximum context length of language
models. This primarily occurs in extremely long functions with
complex type dependencies. We recognize that extracting code
slices without sacrificing key dependency information is still
a challenge.

2) Limited knowledge for function arguments. As function
arguments lack precise definitions, TYPEGEN provides naming
and usage information to enable language models to predict
their types. However, this information is incomplete and can
potentially introduce biases in the model’s predictions [11]. In-
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corporating data flow information via inter-procedural analysis
may be a possible solution to enhance argument information.

VII. CONCLUSION

This paper presents TYPEGEN, a few-shot generative type
inference method for Python programs. Our approach incor-
porates static domain knowledge into language models via
a novel prompt design in the in-context learning paradigm.
Experimental results show that TYPEGEN outperforms both
state-of-the-art supervised type inference methods and cloze-
style type inference methods.
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