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ABSTRACT

As a dynamic programming language, Python has become increas-
ingly popular in recent years. Although the dynamic type system
of Python facilitates the developers in writing Python programs, it
also brings type errors at run-time which are prevalent yet not easy
to fix. There exist rule-based approaches for automatically repairing
Python type errors. The approaches can generate accurate patches
for the type errors covered by manually defined templates, but they
require domain experts to design patch synthesis rules and suffer
from low template coverage of real-world type errors. Learning-
based approaches alleviate the manual efforts in designing patch
synthesis rules and have become prevalent due to the recent ad-
vances in deep learning. Among the learning-based approaches,
the prompt-based approach which leverages the knowledge base
of code pre-trained models via pre-defined prompts, obtains state-
of-the-art performance in general program repair tasks. However,
such prompts are manually defined and do not involve any specific
clues for repairing Python type errors, resulting in limited effec-
tiveness. How to automatically improve prompts with the domain
knowledge for type error repair is challenging yet under-explored.

In this paper, we present TypeFix, a novel prompt-based ap-
proach with fix templates incorporated for repairing Python type
errors. TypeFix first mines generalized fix templates via a novel hi-
erarchical clustering algorithm. The identified fix templates indicate
the common edit patterns and contexts of existing type error fixes.
TypeFix then generates code prompts for code pre-trained models
by employing the generalized fix templates as domain knowledge,
in which the masks are adaptively located for each type error in-
stead of being pre-determined. Experiments on two benchmarks,
including BugsInPy and TypeBugs, show that TypeFix success-
fully repairs 26 and 55 type errors, outperforming the best baseline
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approach by 9 and 14, respectively. Besides, the proposed fix tem-
plate mining approach can cover 75% of developers’ patches in both
benchmarks, increasing the best rule-based approach PyTER by
more than 30%.
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1 INTRODUCTION

Being used in most artificial intelligence and data science applica-
tions, Python becomes extremely popular in recent years. According
to GitHub Octoverse [14], which records the state of open-source
software, Python is the second most-used programming language
in 2022. Moreover, Python continues to see gains in its usage across
GitHub with a 22.5% year-over-year increase [14].

Python adopts a dynamic type system, in which the type of a
variable will be resolved only at run-time. This enables fast pro-
totyping and brings much convenience for developers to write an
executable program. The catch, however, is that more type errors
occur at run-time, threatening the reliability of Python applications.
Oh et al. [33] find that about 30% of questions in Stack Overflow
and issues in GitHub of Python are about type errors. To avoid
type errors, Python Software Foundation accepts several Python
Enhancement Proposals (PEPs) [21, 22, 44, 59] and releases a static
type checker named mypy [32], allowing developers to add type
annotations and check potential type conflicts statically. What’s
more, the recent research [1, 30, 35, 42] on type inference aims at
statically inferring the types of variables, which further reduces the
burden of manual type annotation. These approaches can reduce
potential type errors but provide limited help to repair existing type
errors.

To automatically fix type errors, Oh et al. [33] propose the first
rule-based approach. They manually define nine templates and
several synthesis rules to generate patches via dynamic analysis,
but the manually defined templates suffer from low coverage of
real-world type errors and designing patch synthesis rules requires
substantial efforts from domain experts.

General learning-based automatic program repair (APR) ap-
proaches [7, 19, 26, 52, 57, 58] become quite popular and powerful
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in recent years, since they are feature-agnostic and can automat-
ically learn to generate patches from existing bug fixes, without
explicit definitions of synthesis rules. Among the learning-based ap-
proaches, the Neural Machine Translation (NMT)-based approach
that translates the buggy lines into correct lines was typically used
in the past. Most recently, Xia et al. [52] propose the first prompt-
based APR approach named AlphaRepair and obtain state-of-the-
art performance. Unlike NMT-based APR approaches, AlphaRepair
transforms the APR problem into a fill-in-the-blank problem by
masking several tokens in buggy lines and invoking pre-trained
models to predict the masked tokens. Despite the superior perfor-
mance of the prompt-based approach over NMT-based approaches,
the prompts in AlphaRepair are pre-defined, i.e., where to mask
and how to add masks in buggy code are manually designed. With-
out domain-specific knowledge, the prompt-based approach can
hardly fix the type errors with complex patterns [33]. However,
automatically incorporating the prompt with domain knowledge is
challenging due to different levels of type errors and various type
error fixing patterns.

Our Work. To address the aforementioned challenge, we pro-
poseTypeFix, a domain-aware prompt-based approach for repairing
type errors. TypeFix has two main phases: the template mining
phase and the patch generation phase. The template mining phase
aims at extracting and organizing fix templates from existing type
error fixes. Fix templates are designed to handle type errors at
different levels (e.g., expression level and statement level). Type-
Fix first parses type error fixes into specific fix templates and then
employs a novel hierarchical clustering algorithm to abstract and
merge the specific fix templates into general fix templates. The patch
generation phase aims at exploiting the mined fix templates in the
first phase for producing patches. TypeFix selects the most matched
and commonly-used fix templates based on Breadth-First Search
(BFS) and a frequency-aware ranking algorithm, and then generates
code prompts by applying the ranked fix templates, and invokes
CodeT5 [49] for prediction. TypeFix is fully automated and extend-
able, as it does not need manually defined templates as well as patch
synthesis rules. Additionally, the minded fix templates enable the
proposed prompt-based TypeFix to be aware of domain knowledge
when generating patches.

We evaluate TypeFix on two benchmarks BugsInPy [50] and
TypeBugs [33] by comparing it with four baselines including both
the recent rule-based and learning-based approaches. In theBugsInPy
benchmark, TypeFix successfully fixes 26 out of 54 type errors,
outperforming the most effective baseline Codex [4] by 9. In the
TypeBugs benchmark, TypeFix successfully fixes 55 out of 109
bugs, outperforming the most effective baseline PyTER [33] by 14.
Experiments also show that the fix templates mined by TypeFix can
cover about 75% of type errors in both benchmarks, much higher
than PyTER which only covers 40% of the type errors. The results
demonstrate the effectiveness of TypeFix in repairing Python type
errors.

Contributions.We conclude our contributions as follows.

• To the best of our knowledge, TypeFix is the first domain-
aware prompt-based approach for repairing Python type
errors.

• We propose a novel fix template design that can handle type
errors at different levels, along with a novel hierarchical clus-
tering approach to mine various fix templates from existing
type error fixes.
• Extensive experiments demonstrate the effectiveness of Type-
Fix compared with state-of-the-art rule-based and learning-
based baselines, and the high coverage of the mined fix tem-
plates.

2 MOTIVATION

To better illustrate our motivation, we give an example in List-
ing 1. The type error in Listing 1 is from a popular GitHub project
scrapy in the BugsInPy benchmark. The correct fix for this type
error is to add a user-defined type conversion function to_bytes to
the entire string, as shown in the green-colored line. We also pro-
vide the patches provided by the baseline approaches and TypeFix
in Listing 1.

Baseline Approaches. CoCoNuT [26] is an NMT-based APR
approach that translates the buggy line into the correct line. In the
patch, it modifies the content of the string since the variable user
and password are often used in authorization. However, this cannot
fix the type error. AlphaRepair [52] is a prompt-based APR approach
that masks the tokens in the buggy line to generate patches. In the
patch, it masks the function name unquote and fills a new name ascii
to generate the patch. Without the domain knowledge indicating
there should be a new function call wrapping the entire buggy
string, it fails to identify the correct location to add masks and
thus fails to fix this type error. Codex [4] is a large language model
from OpenAI. Powered by the huge knowledge base stored in the
model, Codex identifies that this type error is related to bytes types,
but it adds checks for the user and password instead of the entire
string, failing to fix this type error. This may be because adding
type conversions for variables is much more frequent than that
for the entire expression. PyTER [33] is a rule-based approach via
dynamic analysis. It fails to find the correct variable inducing the
type error, and also cannot introduce the required user-defined type
conversion function to_bytes.
# Buggy Code: scrapy/scrapy:f042ad

if user:

- user_pass = ’%s:%s’ % (unquote(user), unquote(password))

+ user_pass = to_bytes(’%s:%s’ % (unquote(user), unquote(password)))

raise ValueError('Port cannot be 0 or less.')

creds = base64.b64encode(user_pass).strip()

else:

creds = None

# Patches:

# Incorrect Patch provided by CoCoNuT

user_pass = ’Proxy-Authorization’%(unquote(user), unquote(password))

# Incorrect Patch provided by AlphaRepair

user_pass = ’%s:%s’ % (ascii(user), unquote(password))

# Incorrect Patch provided by Codex

if not isinstance(user, bytes):

user = user.encode(’ascii’)

if not isinstance(password, bytes):

password = password.encode(’ascii’)

# Incorrect Patch provided by PyTER

if isinstance(creds, bytes):

creds = str(creds, ’utf-8’)

# Correct Patch provided by TypeFix
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user_pass = to_bytes(’%s:%s’ % (unquote(user), unquote(password)))

Listing 1: A type error in BugsInPy benchmark

TypeFix. Before fixing a type error, TypeFix first mines fix
templates from existing type error fixes via hierarchical clustering.
In the clustering process, TypeFix can generalize the fix pattern of
adding a type conversion for a variable into that of adding a type
conversion for an expression. Even though the later fix pattern has
low occurrence frequency, TypeFix can still successfully identify
and apply the fix pattern to this type error. Guided by the selected
fix template, TypeFix adds a new function to wrap the original
buggy string, and inserts masks for the name of the new function,
instead of randomly masking several tokens. As a prompt-based
APR approach, TypeFix also mitigates the problem of introducing
user-defined type conversion functions in rule-based approaches
like PyTER, since language models can learn from the contexts of
the type error. Therefore, TypeFix can successfully fix the type
error.

3 APPROACH

TypeFix contains two main phases: the template mining phase and
patch generation phase, with the overview shown in Fig. 1. In the
template mining phase, TypeFix aims at extracting domain-aware
fix templates. TypeFix first parses existing type error fixes into spe-
cific fix templates and then employs a novel hierarchical clustering
algorithm to abstract and merge them into general fix templates.
TypeFix also organizes the specific to general fix templates into
clustering trees. In the patch generation phase, TypeFix aims at gen-
erating patches for new buggy programs by incorporating prompts
with the mined fix templates. Specifically, it selects and ranks the
mined fix templates, and applies them on buggy code to automati-
cally generate domain-aware code prompts. The CodeT5 [49] model
is finally invoked to generate patches by filling the masks in the
code prompts.

3.1 Mining Phase

The template mining phase mainly contains two stages: fix parsing
and fix template mining. The fix parsing stage aims to transform
type error fixes into specific fix templates, and the fix template
mining stage abstracts and merges parsed specific fix templates
into general fix templates via the proposed hierarchical clustering
algorithm. We first give formal definitions of fix templates for ease
of understanding.

3.1.1 Definition of Fix Template. To represent the domain knowl-
edge of where and how to add masks in buggy code for building
code prompts, we define fix template as a combination of three
parts: fix pattern, internal context and external context. The fix pat-
tern indicates how the buggy code is edited to fix the type error, the
internal context pinpoints the locations for applying fix patterns
to handle type errors at different levels, and the external context
indicates the location of the internal context in the entire buggy pro-
gram. The three components are all represented based on template
trees which are defined below.

Definition 3.1.1.1 (Template Tree). A template tree is a tree
(𝑁 , 𝐸, 𝑟𝑡 ) with nodes 𝑁 , edges 𝐸 and root node 𝑟𝑡 ∈ 𝑁 . An edge is
a triple (𝑛, 𝑛′, 𝑟 ) where node 𝑛 is the parent of 𝑛′ with relation 𝑟 .

A node is a quadruple (𝑏𝑡 , 𝑡 , 𝑣 , 𝑖) where 𝑏𝑡 ∈ {Variable, Op, Literal,
Builtin, Type, Attribute, Expr, Stmt} is the base type of node, 𝑡 is
the AST node type, 𝑣 is the value, and 𝑖 is the id. 𝑏𝑡 , 𝑡 , and 𝑣 have a
special value ABS to represent a hole.

We define template trees based on the abstract syntax tree (AST) [9]
of Python. Keeping the original AST node type 𝑡 , we add a base
type 𝑏𝑡 by re-classifying all original AST node types and attribute
types into eight base types, and thus a base type can include multi-
ple AST node types, for example, AST node types BoolOp, BinOp,
and UnaryOp belong to the same base type Expr. We design base
types to obtain a higher level of abstraction than that of ASTs. For
instance, the above three AST node types can all be the conditions
of If statements that serve as guards to prevent type errors. Rep-
resenting the three AST node types as Expr to indicate general
conditions help create more general fix templates.

Definition 3.1.1.2 (Fix Pattern).Afix pattern is amap𝐵_𝑇𝑟𝑒𝑒 →
𝐴_𝑇𝑟𝑒𝑒 , where 𝐵_𝑇𝑟𝑒𝑒 is a template tree of the buggy code, and
𝐴_𝑇𝑟𝑒𝑒 is a template tree of the fixed code.

Definition 3.1.1.3 (Internal Context). An internal context is
a pair (𝐼𝐶_𝑇𝑟𝑒𝑒 , 𝑟𝑛), in which 𝐼𝐶_𝑇𝑟𝑒𝑒 is a template tree of the
deepest statement where a fix pattern locates, and 𝑟𝑛 is a map 𝑛 →
(𝑏𝑟, 𝑎𝑟 ) where𝑏𝑟 and𝑎𝑟 are edge relations,𝑛 ∈ 𝐼𝐶_𝑇𝑟𝑒𝑒.𝑁 indicates
the node where 𝐵_𝑇𝑟𝑒𝑒 is removed with the edge (𝑛, 𝐵_𝑇𝑟𝑒𝑒.𝑟𝑡, 𝑏𝑟 )
and 𝐴_𝑇𝑟𝑒𝑒 is added with the edge (𝑛,𝐴_𝑇𝑟𝑒𝑒.𝑟𝑡, 𝑎𝑟 ).

The internal context is defined to handle edits at different levels.
For example, some expression-level edits only modify single expres-
sions in the statements, while other statement-level edits replace
the entire statements. Since fix patterns only represent the edits
themselves, we use internal contexts to represent the rest parts
of the deepest statements for expression-level edits. The internal
contexts are empty when the edits are at the statement level.

Definition 3.1.1.4 (External Context). An external context is
a pair (𝐵𝐶_𝑇𝑟𝑒𝑒 , 𝐴𝐶_𝑇𝑟𝑒𝑒), where 𝐵𝐶_𝑇𝑟𝑒𝑒 is a template tree of
statements before the internal context and 𝐴𝐶_𝑇𝑟𝑒𝑒 is a template
tree of the statements after the internal context.

We define external contexts to provide extra location information
when 𝐵_𝑇𝑟𝑒𝑒 in the fix pattern and the internal context are both
empty. This usually happens when the fix is about adding a new
statement and does notmodify existing buggy code. The fix template
is a combination of three components including the fix pattern,
internal context and external context, defined as below.

Definition 3.1.1.5 (Fix Template). A fix template is a triple
(𝑃 , 𝐼𝐶 , 𝐸𝐶), where 𝑃 (𝑃 ≠ ∅) is the fix pattern, 𝐼𝐶 is the internal
context, and 𝐸𝐶 is the external context.

We classify fix templates into four categories based on the fix
patterns 𝑃 :

• Add: 𝐵_𝑇𝑟𝑒𝑒 = ∅ ∧𝐴_𝑇𝑟𝑒𝑒 ≠ ∅
• Remove: 𝐵_𝑇𝑟𝑒𝑒 ≠ ∅ ∧𝐴_𝑇𝑟𝑒𝑒 = ∅
• Insert: 𝐵_𝑇𝑟𝑒𝑒 ≠ ∅ ∧𝐴_𝑇𝑟𝑒𝑒 ≠ ∅ ∧ 𝐵_𝑇𝑟𝑒𝑒 ⊂ 𝐴_𝑇𝑟𝑒𝑒
• Replace: 𝐵_𝑇𝑟𝑒𝑒 ≠ ∅ ∧𝐴_𝑇𝑟𝑒𝑒 ≠ ∅ ∧ 𝐵_𝑇𝑟𝑒𝑒 ⊈ 𝐴_𝑇𝑟𝑒𝑒

Note that there could be more fine-grained classifications under
the Replace category such as shuffling the order of statements.
However, we find that except for the Insert category, these cases
are really rare (less than 10 cases in the dataset), so we just adopt
the general Replace category.
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Figure 2: An example of fix parsing process on the fix commit ansible:075c6e.

3.1.2 Fix Parsing. In the fix parsing process,TypeFix parses all type
error fixes into specific fix templates, with an example illustrated
in Fig. 2.

Parsing Fix Patterns and Internal Contexts. Given a fix
commit, TypeFix first extracts the line information of all added and
deleted statements, and then walks through the ASTs of buggy code
and fixed code to build template trees. To handle edits at different
levels, TypeFix locates the deepest statement-level AST nodes that
contain the modified lines, and extracts the corresponding sub-
trees in buggy code and fixed code as 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 ,
respectively. For example, in the fix commit shown in Fig. 2(a),
TypeFix locates the If nodes in the ASTs of buggy code and fixed
code, since it is the deepest statement-level AST node containing the
edits about variable value. Fig. 2(b) illustrates the extracted sub-trees
as 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 . TypeFix then prunes the same sub-trees
shared by 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 to leave only the changed part.
For example, the bodies of If nodes (grey nodes) are pruned and
only the conditions remain in Fig. 2(b).

As the pruned 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 contain only the edit,
TypeFix can check whether the edit is at the expression level or
the statement level. If 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 share the same root
node, TypeFix determines that the edit does not rewrite the entire
statement and thus it is at the expression level. Otherwise, TypeFix
can determine that the edit is at the statement level. For instance,
𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 in Fig. 2(b) have the same root node 𝐼 𝑓

(blue nodes), so the edit is at the expression level. For statement-
level edits, the internal context is empty. For expression-level ed-
its, TypeFix creates the internal context by extracting the same
nodes shared by 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒 to form a new template
tree 𝐼𝐶_𝑇𝑟𝑒𝑒 , and subtracts 𝐼𝐶_𝑇𝑟𝑒𝑒 from 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and 𝐹𝑖𝑥_𝑇𝑟𝑒𝑒
to build 𝐵_𝑇𝑟𝑒𝑒 and 𝐴_𝑇𝑟𝑒𝑒 in the fix pattern. The relations of
edges that connect 𝐼𝐶_𝑇𝑟𝑒𝑒 in the internal context and 𝐵_𝑇𝑟𝑒𝑒 and
𝐴_𝑇𝑟𝑒𝑒 in the fix pattern are also recorded in the internal context.
In the example of Fig. 2, the If node is extracted as 𝐼𝐶_𝑡𝑟𝑒𝑒 in
the internal context in Fig. 2(d), and the final 𝐵_𝑇𝑟𝑒𝑒 and 𝐴_𝑇𝑟𝑒𝑒
constitute fix pattern in Fig. 2(c).

Parsing External Contexts. TypeFix identifies statements that
locate outside the scope of the internal context but have direct data
dependencies with the fix pattern as external contexts. Specifically,
it extracts statements that share the same variables with fix pat-
terns before and after the internal context to build 𝐵𝐶_𝑇𝑟𝑒𝑒 and
𝐴𝐶_𝑇𝑟𝑒𝑒 , respectively. To simplify the fix template abstraction pro-
cess, TypeFix also prunes the sub-trees in 𝐵𝐶_𝑇𝑟𝑒𝑒 and 𝐴𝐶_𝑇𝑟𝑒𝑒
that do not contain shared variables. For example, in Fig. 2, TypeFix
identifies the statement value = boolean(value, strict=False) because
it contains the same variable value used in the fix pattern. TypeFix
builds a template tree 𝐵𝐶_𝑇𝑟𝑒𝑒 based on this statement and prunes
irrelevant sub-trees such as strict=False. Since there is no statement
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after internal contexts that shares the same variables with fix pat-
tern in Fig. 2(c), 𝐴𝐶_𝑇𝑟𝑒𝑒 is left empty. The final parsed external
context is shown in Fig. 2(e).

3.1.3 Fix Template Mining. In the fix template mining process,
TypeFix abstracts and merges the specific fix templates into general
fix templates via hierarchical clustering. The rationale of template
mining is to ensure the least loss of domain knowledge in fix tem-
plates. Based on this rationale, TypeFix abstracts or merges the
two most similar fix templates each time, and organizes specific to
general fix templates as clustering trees. To measure the similarity
between two fix templates, we define two kinds of similarity met-
rics: value distance and structural distance. The structural distance
measures the ratio of nodes in two template trees that have the
same type regardless of values (type matching), while the value
distance measures the ratio of nodes in two template trees that have
the same types and values (value matching).

Definition 3.1.3.1 (Fix Pattern Distances). The value distance
𝑑𝑝 and structural distance 𝑠𝑑𝑝 between two template trees in fix
patterns are defined as

𝑑𝑝 (𝑡1, 𝑡2) = 1 −
𝑉𝑀𝑝 (𝑡1 .𝑟𝑡, 𝑡2 .𝑟𝑡)

Num(𝑡1) + Num(𝑡2)

𝑠𝑑𝑝 (𝑡1, 𝑡2) = 1 −
𝑇𝑀𝑝 (𝑡1 .𝑟𝑡, 𝑡2 .𝑟𝑡)

Num(𝑡1) + Num(𝑡2)
,

where 𝑁𝑢𝑚(𝑡) indicates the number of nodes in the template tree
𝑡 , and ValueMatch 𝑉𝑀𝑝 and TypeMatch 𝑇𝑀𝑝 are defined as

𝑉𝑀𝑝 (𝑛1, 𝑛2) =
{

0 𝑛1 ≠ 𝑛2

2 +∑𝑖∈child(𝑛1,𝑛2 ) 𝑉𝑀𝑝 (𝑛𝑖1, 𝑛
𝑖
2) otherwise

𝑇𝑀𝑝 (𝑛1, 𝑛2) =
{

0 𝑛1 .𝑡 ≠ 𝑛2 .𝑡

2 +∑𝑖∈child(𝑛1,𝑛2 ) 𝑇𝑀𝑝 (𝑛𝑖1, 𝑛
𝑖
2) otherwise

Definition 3.1.3.2 (Context Distances). The value distance 𝑑𝑐
and structural distance 𝑠𝑑𝑐 between two template trees in contexts
are defined as

𝑑𝑐 (𝑡1, 𝑡2) = 1 − MAX(LeafNode(𝑡1), LeafNode(𝑡2),𝑉𝑀𝑐 )
Num(𝑡1) + Num(𝑡2)

𝑠𝑑𝑐 (𝑡1, 𝑡2) = 1 − MAX(LeafNode(𝑡1), LeafNode(𝑡2),𝑇𝑀𝑐 )
Num(𝑡1) + Num(𝑡2)

,

where MAX(𝑎, 𝑏, 𝑐) pairs the elements in 𝑎 and 𝑏, and finds the
highest similarity 𝑐 achieved by the pairs, and returns the number
of pairs, 𝑁𝑢𝑚(𝑡) indicates the number of nodes in the template tree
𝑡 , and 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒 (𝑡) returns the leaf node set of a template tree 𝑡 .
The ValueMatch 𝑉𝑀𝑐 and TypeMatch 𝑇𝑀𝑐 are defined as

𝑉𝑀𝑐 (𝑛1, 𝑛2) =
{

0 𝑛1 ≠ 𝑛2

2 +𝑉𝑀𝑐 (𝑛1 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛2 .𝑝𝑎𝑟𝑒𝑛𝑡) otherwise

𝑇𝑀𝑐 (𝑛1, 𝑛2) =
{

0 𝑛1 .𝑡 ≠ 𝑛2 .𝑡

2 +𝑇𝑀𝑐 (𝑛1 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛2 .𝑝𝑎𝑟𝑒𝑛𝑡) otherwise
To calculate the distances of fix patterns, we adopt a top-down

methodology. We start with the root node and require two nodes to
be type-matching or value-matching before we compare their child
nodes. To calculate the distances of contexts, we adopt a bottom-up
methodology. We start with the leaf nodes and require two nodes
to be type-matching or value-matching before we compare their

parent nodes. Such a difference is caused by the functionality of
fix patterns and contexts. The template trees in the fix patterns are
used to generate patch code, so based on the definition of ASTs
the children nodes are meaningful only if their parent nodes are
determined. On the contrary, the template trees in the contexts are
used to match the locations that fix patterns should apply instead
of generating code, so the children nodes contain more specific
location information than the parent nodes. For example, in Fig. 2(d),
even if we remove the node Assign, it can still match the original
statement through Call, but if we remove the node Variable, it can
matchmore general statements that have no direct data dependency
with fix pattern in Fig. 2(b).

Template Abstraction. TypeFix does not abstract the whole
fix template, instead, it abstracts one component, i.e., fix pattern,
internal context or external context, each time. TypeFix abstracts
the two similar components through a process named Abstract.
Fig. 3 and Fig. 4 formally present the processes of Abstract on fix
patterns and contexts, respectively.

The abstraction of fix patterns and contexts follows the afore-
mentioned top-down and bottom-up methodology, respectively.
Generally, there could be four cases when abstracting the template
node 𝑎 and 𝑏 from two similar template trees:

• Same Node: 𝑎 and 𝑏 are exactly the same, and they can be
reserved for the generalized fix template.
• Value Abstraction: 𝑎 and 𝑏 have the same types but differ-
ent values. TypeFix creates a node with the same type and
set the value as a special ABS token to indicate a hole.
• Type Abstraction: 𝑎 and 𝑏 have the same base types but
different types and values. TypeFix creates a node with the
same base type, and sets the type and value as a special ABS
token to indicate a hole.
• Node Removal: 𝑎 and 𝑏 have no common attributes. Type-
Fix directly removes the two nodes.

TypeFix also prunes all child nodes in Type Abstraction and Node
Removal, because the change of types for an AST node disables the
functionality of its original child nodes.

Mining Fix Templates via Hierarchical Clustering. With
the above-mentioned similarity metrics and abstraction processes,
TypeFix selects similar fix templates and merges them via hierar-
chical clustering to build clustering trees. We give the definition of
the clustering tree as follows.

Definition 3.1.3.3 (Clustering Tree). A clustering tree is a
tree (𝑇, 𝐸, 𝑟𝑡) with fix template set 𝑇 , edges 𝐸 and root fix template
𝑟𝑡 ∈ 𝑇 . An edge is a pair (𝑡, 𝑡 ′) where fix template 𝑡 is the parent of
fix template 𝑡 ′, indicating that 𝑡 is directly abstracted from 𝑡 ′.

To ensure the least loss of domain knowledge, TypeFix follows
two strategies in the mining process. First, TypeFix follows the
priority order of “external context > internal context > fix pat-
tern” when selecting component pairs for abstraction, ensuring
that abstraction of fix patterns happens only if no external context
pairs and internal context pairs can be abstracted. Second, TypeFix
prefers value abstraction to type abstraction, so it prioritizes com-
ponent pairs, i.e., fix pattern pairs, internal context pairs or external
context pairs, with a structural distance at 0.

We present the hierarchical clustering algorithm of TypeFix in
Alg. 1. At the beginning of each iteration, TypeFix calculates the
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Abstract(𝑛1 (𝐶1
𝑟1 , ...,𝐶

1
𝑟𝑚
), 𝑛2 (𝐶2

𝑟1 , ...,𝐶
2
𝑟𝑛
)) =

𝑛1 (𝑂𝑟1 , ...,𝑂𝑟𝑘 ) if 𝑛1 = 𝑛2

where 𝑘 = min(𝑚,𝑛),
𝑝 = min(len(𝐶1

𝑟𝑖
), len(𝐶2

𝑟𝑖
)), 𝑂𝑟𝑖 = {𝑂1

𝑟𝑖
, ...,𝑂

𝑝
𝑟𝑖 },

𝑂
𝑗
𝑟𝑖 = Abstract(𝐶1𝑗

𝑟𝑖 ,𝐶
2𝑗
𝑟𝑖 ) ∀𝑗 ∈ [1, 𝑝]

(Same Node)
𝑜 (𝑂𝑟1 , ...,𝑂𝑟𝑘 ) if 𝑛1 .𝑣 ≠ 𝑛2 .𝑣 ∧ 𝑛1 .𝑡 = 𝑛2 .𝑡 ∧ 𝑛1 .𝑏𝑡 = 𝑛2 .𝑏𝑡

where 𝑜.𝑣 = 𝐴𝐵𝑆, 𝑜.𝑡 = 𝑛1 .𝑡, 𝑜 .𝑏𝑡 = 𝑛1 .𝑏𝑡,

𝑘 = min(𝑚,𝑛), 𝑝 = min(len(𝐶1
𝑟𝑖
), len(𝐶2

𝑟𝑖
)),

𝑂𝑟𝑖 = {𝑂1
𝑟𝑖
, ...,𝑂

𝑝
𝑟𝑖 },

𝑂
𝑗
𝑟𝑖 = Abstract(𝐶1𝑗

𝑟𝑖 ,𝐶
2𝑗
𝑟𝑖 ) ∀𝑗 ∈ [1, 𝑝]

(Value Abstraction)
𝑜 if 𝑛1 .𝑡 ≠ 𝑛2 .𝑡 ∧ 𝑛1 .𝑏𝑡 = 𝑛2 .𝑏𝑡

where 𝑜.𝑣 = 𝐴𝐵𝑆, 𝑜.𝑡 = 𝑛1 .𝑏𝑡, 𝑜 .𝑏𝑡 = 𝑛1 .𝑏𝑡

(Type Abstraction)
∅ otherwise

(Node Removal)

where 𝑛1, 𝑛2 ∈ 𝐴_𝑇𝑟𝑒𝑒.𝑁 or 𝑛1, 𝑛2 ∈ 𝐵_𝑇𝑟𝑒𝑒.𝑁 ,𝐶
𝑗
𝑟𝑖 = {𝐶

𝑗𝑡
𝑟𝑖 }

s.t. Edge(𝑛 𝑗 ,𝐶 𝑗𝑡
𝑟𝑖 , 𝑟𝑖 ) ∈ 𝐴_𝑇𝑟𝑒𝑒.𝐸 or Edge(𝑛 𝑗 ,𝐶 𝑗𝑡

𝑟𝑖 , 𝑟𝑖 ) ∈ 𝐵_𝑇𝑟𝑒𝑒.𝐸

Abstract(𝑃 (𝑎1, 𝑏1), 𝑃 (𝑎2, 𝑏2)) = 𝑃 (𝑎, 𝑏)
where 𝑎.𝑟𝑡 = Abstract(𝑎1 .𝑟𝑡, 𝑎2 .𝑟𝑡)

𝑏.𝑟𝑡 = Abstract(𝑏1 .𝑟𝑡, 𝑏2 .𝑟𝑡)

Figure 3: The process of Abstraction for fix patterns.

distances of three components for every two fix templates (lines
3∼4). TypeFix then removes duplicated fix templates. Based on the
calculated distances, TypeFix first handles external context pairs
(lines 7 ∼ 13), then internal context pairs (lines 16 ∼ 22), and finally
fix patterns (lines 25 ∼ 30). If any abstraction or merge happens,
the current iteration will be terminated and a new iteration will
begin (lines 14 and 23).

When handling external context pairs, TypeFix groups the fix
templates with the same internal contexts and fix patterns into
different clusters (line 6). When handling internal context pairs,
TypeFix groups the fix templates with the same fix patterns into
different clusters (line 15). When handling fix patterns, all fix tem-
plates are grouped into one single cluster (line 24). This ensures that
only fix templates in the same cluster can be abstracted and merged
into more general fix templates under the priority order. For each
cluster, TypeFix selects the certain components with the lowest
distance in two fix templates (lines 8, 17, 26), and abstracts them
into more general components in each iteration (lines 10, 19, 27).
The selection has two stages. In the first stage, only components
with a structural distance of 0 in the fix templates are considered
to prioritize value abstraction. In the second stage, when no such
component exists, the rest components are considered. Note that
there could be trivial abstractions such as removing all nodes for
a template tree so that an empty template tree can represent any

Abstract(𝑛1 (𝑃1𝑟1 ), 𝑛2 (𝑃
2
𝑟2 )) =

𝑛1 (𝑂𝑟 ) if 𝑛1 = 𝑛2

where 𝑂𝑟 = Abstract(𝑃1𝑟1 , 𝑃
2
𝑟2 ) if 𝑟1 = 𝑟2,

𝑂𝑟 = ∅ if 𝑟1 ≠ 𝑟2

(Same Node)
𝑜 (𝑂𝑟 ) if 𝑛1 .𝑣 ≠ 𝑛2 .𝑣 ∧ 𝑛1 .𝑡 = 𝑛2 .𝑡 ∧ 𝑛1 .𝑏𝑡 = 𝑛2 .𝑏𝑡

where 𝑜.𝑣 = 𝐴𝐵𝑆, 𝑜.𝑡 = 𝑛1 .𝑡, 𝑜 .𝑏𝑡 = 𝑛1 .𝑏𝑡,

𝑂𝑟 = Abstract(𝑃1𝑟1 , 𝑃
2
𝑟2 ) if 𝑟1 = 𝑟2,

𝑂𝑟 = ∅ if 𝑟1 ≠ 𝑟2

(Value Abstraction)
𝑜 if 𝑛1 .𝑡 ≠ 𝑛2 .𝑡 ∧ 𝑛1 .𝑏𝑡 = 𝑛2 .𝑏𝑡

where 𝑜.𝑣 = 𝐴𝐵𝑆, 𝑜.𝑡 = 𝑛1 .𝑏𝑡, 𝑜 .𝑏𝑡 = 𝑛1 .𝑏𝑡

(Type Abstraction)
∅ otherwise

(Node Removal)
where 𝑛1, 𝑛2 ∈ 𝐼𝐶_𝑇𝑟𝑒𝑒.𝑁 or 𝑛1, 𝑛2 ∈ 𝐵𝐶_𝑇𝑟𝑒𝑒.𝑁

or 𝑛1, 𝑛2 ∈ 𝐴𝐶_𝑇𝑟𝑒𝑒.𝑁 , Edge(𝑛 𝑗 , 𝑃 𝑗
𝑟 𝑗 , 𝑟 𝑗 ) ∈ 𝐼𝐶_𝑇𝑟𝑒𝑒.𝐸

or Edge(𝑛 𝑗 , 𝑃 𝑗
𝑟 𝑗 , 𝑟 𝑗 ) ∈ 𝐵𝐶_𝑇𝑟𝑒𝑒.𝐸 or Edge(𝑛 𝑗 , 𝑃 𝑗

𝑟 𝑗 , 𝑟 𝑗 ) ∈ 𝐴𝐶_𝑇𝑟𝑒𝑒.𝐸

Abstract(𝐼𝐶 (𝑎1), 𝐼𝐶 (𝑎2), 𝑃𝑎𝑖𝑟𝑠 (𝑐)) = 𝐼𝐶 (𝑎)
where LeafNode(𝑎) = {Abstract(𝑝𝑖1, 𝑝

𝑖
2)} ∀𝑝

𝑖 ∈ 𝑐
Abstract(𝐸𝐶 (𝑎1, 𝑏1), 𝐸𝐶 (𝑎2, 𝑏2), 𝑃𝑎𝑖𝑟𝑠 (𝑐1, 𝑐2)) = 𝐸𝐶 (𝑎, 𝑏)

where LeafNode(𝑎) = {Abstract(𝑝𝑖1, 𝑝
𝑖
2)} ∀𝑝

𝑖 ∈ 𝑐1
LeafNode(𝑏) = {Abstract(𝑝𝑖1, 𝑝

𝑖
2)} ∀𝑝

𝑖 ∈ 𝑐2

Figure 4: The process of Abstraction for both internal context

and external context.

code. As empty fix patterns provide no domain knowledge for patch
generation, TypeFix does not select two fix patterns whose distance
and structural distance are both at 1 in the fix templates for further
abstraction.

At the end of each iteration, the new fix templates are included
in the set, and the old fix templates are removed from the set (lines
11, 20, 28). The relationships between the new fix templates and
the old fix templates are recorded in the clustering tree (lines 12,
21, 29). The merge of fix templates happens only when handling
external contexts since the fix patterns and internal contexts of fix
templates are already required to be the same at this time. TypeFix
also records the number of instances each fix template represent in
the training set to facilitate fix template ranking in the next phase.
When the template mining process completes, clustering trees that
contain specific to general fix templates are generated, facilitating
the next patch generation phase.

3.2 Patch Generation Phase

The patch generation phase of TypeFix mainly contains two pro-
cesses: fix template matching and prompt-based patch generation.
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Algorithm 1 Fix Template Mining
Input: A set of parsed specific fix templates, 𝑇
Output: Mined fix templates, 𝐶𝑇
1: 𝐶𝑇 ← 𝑇

2: while isChanged(𝐶𝑇 ) do
3: 𝐷𝑝 , 𝐷𝐼𝐶 , 𝐷𝐸𝐶 ← CalculateValueDistances(𝐶𝑇 )
4: 𝑆𝐷𝑝 , 𝑆𝐷𝐼𝐶 , 𝑆𝐷𝐸𝐶 ← CalculateStructuralDistances(𝐶𝑇 )
5: 𝐶𝑇 ← Deduplicate(𝐶𝑇 )
6: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← selectClusters(𝐶𝑇 , 𝐷𝑃 , 𝐷𝐼𝐶 , 𝐷𝐸𝐶 , 𝑆𝐷𝐸𝐶 )
7: for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do ⊲ Handle external contexts
8: 𝑡1, 𝑡2 ← argmin(𝑐 , 𝐷𝐸𝐶 ); 𝑛𝑡 ← 𝑡1
9: 𝑝𝑎𝑖𝑟𝑠 ← getPairs(𝐷𝐸𝐶 (𝑡1, 𝑡2))
10: 𝑛𝑡 .𝐸𝐶 ← Abstract(𝑡1 .𝐸𝐶, 𝑡2 .𝐸𝐶, 𝑝𝑎𝑖𝑟𝑠 , Context)
11: 𝐶𝑇 ← 𝐶𝑇 − {𝑡1, 𝑡2} + {𝑛𝑡}
12: 𝑡1 .𝑝𝑎𝑟𝑒𝑛𝑡, 𝑡2 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑡

13: end for

14: continue if isChanged(𝐶𝑇 )
15: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← selectClusters(𝐶𝑇 , 𝐷𝑃 , 𝐷𝐼𝐶 , 𝑆𝐷𝐼𝐶 )
16: for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do ⊲ Handle internal contexts
17: 𝑡1, 𝑡2 ← argmin(𝑐 , 𝐷𝐸𝐶 ); 𝑛𝑡1 ← 𝑡1; 𝑛𝑡2 ← 𝑡2
18: 𝑝𝑎𝑖𝑟𝑠 ← getPairs(𝐷𝐼𝐶 (𝑡1, 𝑡2))
19: 𝑛𝑡1 .𝐼𝐶, 𝑛𝑡2 .𝐼𝐶 ← Abstract(𝑡1 .𝐼𝐶, 𝑡2 .𝐼𝐶, 𝑝𝑎𝑖𝑟𝑠 , Context)
20: 𝐶𝑇 ← 𝐶𝑇 − {𝑡1, 𝑡2} + {𝑛𝑡1, 𝑛𝑡2}
21: 𝑡1 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑡1; 𝑡2 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑡2
22: end for

23: continue if isChanged(𝐶𝑇 )
24: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← selectClusters(𝐶𝑇 , 𝐷𝑃 , 𝑆𝐷𝑃 )
25: for 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do ⊲ Handle fix patterns
26: 𝑡1, 𝑡2 ← argmin(𝑐 , 𝐷𝑃 ); 𝑛𝑡1 ← 𝑡1; 𝑛𝑡2 ← 𝑡2
27: 𝑛𝑡1 .𝑃, 𝑛𝑡2 .𝑃 ← Abstract(𝑡1 .𝑃, 𝑡2 .𝑃 , Pattern)
28: 𝐶𝑇 ← 𝐶𝑇 − {𝑡1, 𝑡2} + {𝑛𝑡1, 𝑛𝑡2}
29: 𝑡1 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑡1; 𝑡2 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑡2
30: end for

31: end while

The fix template matching process aims to select and rank appropri-
ate fix templates that could be applied to the buggy program. The
prompt-based patch generation process aims to generate candidate
patches by applying selected fix templates to generate code prompts
and invoking code pre-trained models for mask prediction.

3.2.1 Fix Template Matching. In the fix template matching pro-
cess, TypeFix selects matched fix templates on clustering trees
via Breadth-First Search (BFS) and then ranks fix templates with
frequency and abstraction ratio.

Selecting Fix Templates. Given a buggy program, TypeFix
parses the bug lines into a template Tree 𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 , and the contexts
before and after the bug lines into template trees 𝐵𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 and
𝐴𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 , respectively. TypeFix compares the triple (𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 ,
𝐵𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 , 𝐴𝐵𝑢𝑔_𝑇𝑟𝑒𝑒) with fix templates in the clustering trees
to find the appropriate fix templates. We define the following rules
to check whether a buggy program matches a fix template.

Definition 3.2.1.1 (Template Node Match). For two template
nodes 𝑎 and 𝑏, 𝑎 matches 𝑏 if 𝑎.𝑣𝑎𝑙𝑢𝑒 matches 𝑏.𝑣𝑎𝑙𝑢𝑒 and (𝑎.𝑡, 𝑎.𝑏𝑡)
matches (𝑏.𝑡, 𝑏.𝑏𝑡). 𝑎.𝑣𝑎𝑙𝑢𝑒 matches 𝑏.𝑣𝑎𝑙𝑢𝑒 if 𝑏.𝑣𝑎𝑙𝑢𝑒 = 𝐴𝐵𝑆 ∨
𝑎.𝑣𝑎𝑙𝑢𝑒 = 𝑏.𝑣𝑎𝑙𝑢𝑒 . (𝑎.𝑡, 𝑎.𝑏𝑡) matches (𝑏.𝑡, 𝑏.𝑏𝑡) if 𝑎.𝑏𝑡 = 𝑏.𝑏𝑡 ∧
(𝑎.𝑏𝑡 = 𝑏.𝑡 ∨ 𝑎.𝑡 = 𝑏.𝑡).

Definition 3.2.1.2 (Template Tree Match). For two template
trees 𝐴 and 𝐵, 𝐴 matches 𝐵 if there is a node 𝑎 ∈ 𝐴.𝑁 where 𝑎
matches to 𝐵.𝑟𝑡 and there exists node maps {𝑎𝑐1 → 𝑏𝑐1, ..., 𝑎𝑐𝑛 →
𝑏𝑐𝑛} where 𝑎𝑐𝑖 matches 𝑏𝑐𝑖 , {𝑎𝑐1, ..., 𝑎𝑐𝑛} ⊆ 𝑎.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑎𝑐𝑖+1 .𝑖𝑑 >

𝑎𝑐𝑖 .𝑖𝑑 , and {𝑏𝑐1, ..., 𝑏𝑐𝑛} = 𝐵.𝑟𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛. 𝐴 always matches 𝐵 if
𝐵 = ∅.

Definition 3.2.1.3 (Fix TemplateMatch). For a buggy program
(𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 , 𝐵𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 , 𝐴𝐵𝑢𝑔_𝑇𝑟𝑒𝑒) and a fix template (𝑃 , 𝐼𝐶 , 𝐸𝐶),
the buggy program matches the fix template if 𝐵𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 matches
𝐸𝐶.𝐵𝐶_𝑇𝑟𝑒𝑒 ,𝐴𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 matches𝐸𝐶.𝐴_𝑇𝑟𝑒𝑒 and𝐵𝑢𝑔_𝑇𝑟𝑒𝑒 matches
Concat(𝐼𝐶.𝐼𝐶_𝑇𝑟𝑒𝑒 , 𝑃 .𝐵_𝑇𝑟𝑒𝑒 ,𝐼𝐶.𝑟𝑛), where Concat(𝑎, 𝑏, 𝑟𝑛) indi-
cates concatenating template tree 𝑏 to template tree 𝑎 with edge (𝑛,
𝑏.𝑟𝑡 , 𝑟𝑛[𝑛] .𝑏𝑟 ).

With the above rules, TypeFix starts with the root fix template
(most general fix templates) of each clustering tree and walks
through the clustering tree via bread-first search (BFS) until it finds
the deepest fix template (most specific fix templates) matched by
the buggy program. These fix templates are collected to be ranked
in the next step.

Ranking Fix Templates. TypeFix ranks the fix templates before
applying them to the buggy program. To provide the most domain
knowledge for pre-trained models in the patch generation process,
TypeFix utilizes a two-step strategy to prioritize fix templates.

TypeFix groups the fix templates with the same concatenated
template tree of 𝐼𝐶_𝑇𝑟𝑒𝑒 and 𝐵_𝑇𝑟𝑒𝑒 . These fix templates provide
different fix solutions for the same buggy pattern. TypeFix ranks
fix templates in one group based on the number of training in-
stances they represent because a larger number indicates that the
fix template is used more frequently on the given buggy program.
TypeFix then ranks the groups based on the abstraction ratio of
𝐴_𝑇𝑟𝑒𝑒 of the first fix template in each group. The abstraction ratio
of a template tree is defined by the ratio of nodes whose values or
types are 𝐴𝐵𝑆 tokens. A higher abstraction ratio of 𝐴_𝑇𝑟𝑒𝑒 indi-
cates less domain knowledge associated, so that code pre-trained
models need to predict more information before they can generate
complete candidate patches. For example, an abstraction ratio of
1.0 indicates the fix template actually is a huge hole and there is no
domain knowledge assisting the generation of patches. Therefore,
TypeFix prioritizes the groups with a lower abstraction ratio to
include more domain knowledge in the patch generation process.

3.2.2 Prompt-based Patch Generation. In the process, TypeFix ap-
plies ranked fix templates on the buggy program and generates
code prompts. CodeT5 model is then invoked to fill the masks in
code prompts and generate candidate patches.

Applying Fix Templates. For each selected fix template, Type-
Fix completes the 𝐴_𝑇𝑟𝑒𝑒 in its fix pattern by adding dummy AST
nodes, i.e., AST nodes with values of 𝐴𝐵𝑆 tokens, as placeholders,
because some child AST nodes are removed in the fix template min-
ing process. TypeFix then replaces the sub-tree AST of the buggy
program that matches 𝐵_𝑇𝑟𝑒𝑒 with the completed 𝐴_𝑇𝑟𝑒𝑒 , and
converts the modified AST of the buggy program to code prompts.
Code prompts are source code that contains ABS tokens as masks
to be predicted by code pre-trained models.

Generating Patches. Most code pre-trained models are trained
to predict masks in source code, thus they can naturally be used
to predict the value of 𝐴𝐵𝑆 tokens in the code prompts. In this
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paper, we choose CodeT5 [49] as the code pre-trained model in the
patch generation process, since it is specially designed for the code
generation task [49]. When generating patches, TypeFix replaces
the ABS tokens in the code prompt with ordered mask tokens
used in CodeT5, e.g., <extra_id_0>, ..., <extra_id_99>. TypeFix then
invokes CodeT5 to predict tokens for each mask. The predicted
values for the masks are filled into the code prompts to generate
candidate patches.

Validating Patches. TypeFix adopts the classic generate-and-
validatemethodology in patch generation. For the generated patches,
TypeFix first filters out those with syntax errors, and then runs
the test suite on each patch to find plausible patches, i.e., those
can successfully pass all test cases. Plausible patches are further
examined by the authors to identify correct patches, i.e., those are
semantically identical to the developer patch when ignoring I/O
side effects such as messages in print statements.

4 EXPERIMENTAL DESIGN

4.1 Dataset

Training Set. Following previous work [33], we build a dataset
for the fix template mining process of TypeFix and the training
of baselines. We collect 8,722 merged pull requests from GitHub
that contain the term “fix type error”. We extract the fixes from
the commits in collected pull requests. We remove the overlong
commits that contain more than 50 lines of modified code. Finally,
we get 10,981 fixes to form the training set.

Benchmarks. Following previous work [33], we use two bench-
marks BugsInPy [50] and TypeBugs [33]. The two benchmarks
initially separate type errors by commits, but we find that a single
commit can also involve more than one type errors in different
locations. To avoid the correct fix of one type error being hidden by
another type error, we further split the commits that contain two or
more type errors into multiple ones. We also remove the duplicated
type errors, i.e., those that have the same commit signatures, in two
benchmarks. Finally, we get 54 type errors from BugsInPy and 109
type errors from TypeBugs.

4.2 Baselines

We compare TypeFix with the following four baselines.
PyTER. PyTER [33] is a rule-based APR approach designed for

repairing Python type errors. It has nine pre-defined templates and
several rules to synthesize templates to generate candidate patches.

AlphaRepair. AlphaRepair [52] is the state-of-the-art prompt-
based approach for general-purpose APR. It masks tokens in the
buggy code based on some general prompt templates and invokes
code pre-trained models to generate patches.

CoCoNuT.CoCoNuT [26] is anNMT-based approach for general-
purpose APR. It translates the buggy code into candidate patches.

Codex. Codex [4] is a large GPT model fine-tuned on publicly
available code from GitHub. It is designed by OpenAI and used to
power GitHub Copilot [29] service.

4.3 Metrics

We adopt the commonly used Correct and Plausible metrics in
previous work [19, 26, 33, 52] to evaluate the performance of Type-
Fix on repairing type errors. Besides, we add a new metric named

Table 1: Evaluation results of TypeFix compared with three

baselines. Results are presented in the Correct/Plausible for-

mat. Fix rate is the ratio of correct patches.

TypeBugs

Project #B TypeFix PyTER Codex AlphaRepair CoCoNuT

airflow 14 9/9 4/4 7/7 1/6 0/4
beets 1 0/0 0/1 0/0 0/0 0/0
core 9 7/7 5/7 4/5 4/4 2/3
kivy 1 0/0 0/1 0/0 0/1 0/1
luigi 2 0/2 0/0 0/2 1/2 0/0

numpy 3 0/3 0/2 0/1 0/2 0/0
pandas 48 21/32 17/27 18/19 11/22 3/10
rasa 2 2/2 0/0 2/2 0/0 0/0

requests 4 4/4 4/4 2/2 0/1 0/0
rich 4 2/3 0/1 1/1 0/0 0/0
salt 8 5/8 5/5 4/5 1/5 0/2
sanic 2 0/0 2/2 0/0 0/0 0/0

scikit-learn 7 2/3 2/3 1/2 0/0 0/0
tornado 1 0/0 1/1 0/0 0/0 0/0
Zappa 3 3/3 1/1 0/0 1/3 0/1

Total 109 55/76 41/59 39/46 19/46 5/21
Fix Rate (%) - 50.5 37.6 35.8 17.4 4.6

BugsInPy

Project #B TypeFix PyTER Codex AlphaRepair CoCoNuT

ansible 1 0/0 0/0 0/0 0/0 0/0
fastapi 1 1/1 0/0 1/1 0/0 0/0
keras 7 4/6 1/1 0/3 0/4 0/4
luigi 7 4/5 3/5 3/3 0/0 0/0

pandas 19 4/13 4/6 2/6 3/10 3/8
scrapy 12 10/11 5/7 10/12 1/4 2/4
spacy 1 0/1 0/1 0/0 0/1 0/1
tornado 2 1/1 1/1 1/1 0/1 0/1

youtube-dl 4 2/3 1/1 0/2 1/1 1/1

Total 54 26/41 15/22 17/28 5/21 6/19
Fix Rate (%) - 48.1 27.8 31.5 9.3 11.1

Template Coverage to evaluate the number of developer patches
covered by the fix templates mined by TypeFix and pre-defined
ones from PyTER. Template Coverage is defined by the ratio of
bugs whose developer patch matches a fix template of an approach.

4.4 Implementation

The entire framework of TypeFix is implemented using Python,
which containsmore than 10,000 lines of code.We adopt the CodeT5-
base [40] model to predict the masks in code prompts and generate
candidate patches. For PyTER, AlphaRepair and CoCoNuT, we di-
rectly use the replication packages released by the authors and
re-implement them on our task. We train CoCoNuT with its origi-
nal training set and the training set we collected to adapt it to fix
Python type errors. Since Codex is not publicly available, we use
the public API [34] of engine code-davinci-002 provided by OpenAI
to query it with prompts. We use a similar prompt from previous
work [51]. The only difference is that we use three examples instead
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(a) TypeBugs (b) BugsInPy

Figure 5: Venn diagram of correct patches provided by

learning-based APR approaches.

of two at the beginning of the prompt and only mask the buggy line
to maximize the performance of Codex. We make all other settings
consistent with previous work [19, 26, 33, 51, 52]. All experiments
are conducted on a Linux machine (Ubuntu 20.04) with two Intel
Xeon@2.20GHZ CPUs, one NVIDIA A100-SXM4-40GB GPU and
256GB RAM.

5 EVALUATION

In this section, we evaluate the performance of TypeFix on the
following three research questions:

• RQ1: How effective is TypeFix to fix type errors?
• RQ2: How capable is TypeFix to mine fix templates from
existing bug fixes?
• RQ3: When does TypeFix fail to fix type errors?

5.1 RQ1: Effectiveness of TypeFix

To evaluate the effectiveness of TypeFix on repairing type errors, we
compare TypeFix with state-of-the-art rule-based APR approaches
and learning-based APR approaches. Table 1 presents the perfor-
mance of TypeFix along with baseline approaches on two bench-
marks TypeBugs and BugsInPy.

Comparison with Rule-based Approach. As can be seen in
Table 1, TypeFix can successfully fix 55 type errors in TypeBugs
and 26 type errors in BugsInPy, outperforming rule-based approach
PyTER by 14 and 11 type errors, respectively. We attribute the im-
provement of TypeFix to the higher coverage of fix templates mined
from existing type error fixes and the generated domain-aware code
prompts. Furthermore, we analyze the unique type errors that Type-
Fix and PyTER can fix in two benchmarks and present the results
in Table 2. We find that TypeFix obtains 24 and 16 unique type
error fixes in TypeBugs and BugsInPy, respectively, while PyTER
only obtains 10 and 5 unique type error fixes in TypeBugs and
BugsInPy, respectively. This further demonstrates the effectiveness
of TypeFix when compared with PyTER.

Comparisonwith Learning-based Approaches. From Table 1
we can see that TypeFix, Codex and AlphaRepair generally perform
much better than CoCoNuT, indicating the superior performance of
prompt-based approaches.When comparing TypeFixwith AlphaRe-
pair which adopts general domain-unaware prompt templates, we
find that TypeFix achieves a 1× ∼ 4× larger fix rate than AlphaRe-
pair. This indicates that general domain-unaware prompt templates

Table 2: Comparison of the number of unique type error fixes

and template coverage between TypeFix and PyTER.

Approach

TypeBugs BugsInPy

#Unique Coverage #Unique Coverage

TypeFix 24 83 (76.1%) 16 40 (74.1%)
PyTER 10 46 (42.2%) 5 18 (33.3%)

Table 3: Statistics of fix templates mining in TypeFix.

Category #Instances

#Clustering Trees

(>1/>5)

Mining Time/s

Add 2,656 150/27 2,819
Remove 570 10/5 59
Insert 1,648 350/47 659
Replace 6,107 184/70 32,621

Table 4: Ablation results.

TypeBugs BugsInPy

#Correct #Plausible #Correct #Plausible

No Template 19 41 6 20

Add +11 +10 +3 +5
Remove +1 +1 +0 +0
Replace +6 +8 +4 +9
Insert +18 +16 +13 +17

Total 55 76 26 41

such as randomly replacing several tokens in code can hardly han-
dle complicated type errors. Compared with the most advanced
code pre-trained model Codex, TypeFix still obtains a significant
improvement by fixing 16 and 9 more type errors than Codex in
TypeBugs and BugsInPy, respectively. This improvement further
demonstrates the importance of domain knowledge for repairing
type errors, even though Codex has a much larger parameter size
(12B) than that (220M) of the CodeT5 model utilized by TypeFix.

In addition to the total number of type errors fixed by each
approach, we further evaluate the number of unique type error
fixes. Fig. 5 presents the unique type errors that TypeFix and three
learning-based approaches can correctly fix in the format of Venn
diagrams. We observe that TypeFix obtains 16 and 10 unique type
error fixes in TypeBugs and BugsInPy, respectively, while other
approaches only obtain 0 ∼ 3 unique bug fixes in two benchmarks.
This indicates that the contribution of domain-aware fix templates
cannot be replaced by the combination of existing learning-based
approaches.

Answer to RQ1: TypeFix successfully fixes 55 and 26 bugs in
two benchmarks, outperforming state-of-the-art approaches by
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at least 14 bugs and 9 bugs, respectively. Meanwhile, TypeFix
obtains the most unique type error fixes in two benchmarks.

5.2 RQ2: Capability of TypeFix to Mine Fix

Templates

To comprehensively investigate the capability of TypeFix to mine
fix templates, we focus on the performance of TypeFix in template
mining and the usefulness of fix templates mined by TypeFix.

Table 3 presents the performance of TypeFix in fix template min-
ing process. Starting with thousands of existing bug fixes, TypeFix
can mine 10 ∼ 350 clustering trees. After discarding the clustering
trees with occurrence frequency lower than a threshold (5 in this
paper), TypeFix finally gets 5 ∼ 70 clustering trees. The mining
process generally takes shorter than one minute to at most nine
hours. Table 2 presents the template coverage achieved by TypeFix
and PyTER. From it we can observe that fix templates mined by
TypeFix can cover about 75% of type errors in two benchmarks
while the manually defined fix templates in PyTER can only cover
about 30% ∼ 40% of type errors.

To further study how fix templates mined by TypeFix can help
the patch generation process, we conduct an ablation study on fix
templates under each category. Following previous study [52], we
start with the case that no fix template is applied, i.e., the CodeT5
model is asked to generate a complete new line to replace the origi-
nal buggy line. We then gradually apply fix templates under Add,
Remove, Replace and Insert categories, and observe the number of
new correct and plausible patches, respectively. We show the re-
sults in Table 4. We can find that all four categories of fix templates
contribute to generating correct patches. This demonstrates the
contribution of domain knowledge stored in the fix templates. We
also note that fix templates under Insert and Add categories con-
tribute the most. The reason could be attributed to that developers
often add guards to guarantee the desired types or directly convert
input types into desired types when fixing type errors.

Answer to RQ2: TypeFix achieves a template coverage of about
75% on both benchmarks. Ablation results also demonstrate the
usefulness of fix templates mined by TypeFix under each cate-
gory.

5.3 RQ3: Limitations of TypeFix

Our experiments also show the limitations of TypeFix as it cannot
fix all type errors in two benchmarks. By analyzing the type er-
rors that TypeFix cannot fix in two benchmarks, we conclude two
possible limitations.

The first limitation is that TypeFix cannot always find matched
fix templates to the current buggy program. Based on Table 2, we
can find that even if fix templates mined by TypeFix can cover as
many as 75% cases in two benchmarks, there exist a few cases (∼25%)
that do not share similar patterns with instances in the training set.
An example is illustrated in the first type error of Listing 2. To fix
this type error, the developer changes a list comprehension into an
attribute access, which does not appear in the training set. TypeFix
thus cannot find proper fix templates for this type error and fails to
fix it. This limitation can be mitigated by adapting TypeFix to new

datasets, so that TypeFix can mine new fix templates to improve
the template coverage.

1 #Type Error 1: apache/airflow :892 d4d

2 if conf.getboolean('core', 'store_dag_code ',\

3 fallback=False):

4 - DagCode.bulk_sync_to_db([dag.fileloc for dag in orm_dag])

5 + DagCode.bulk_sync_to_db([orm_dag.fileloc])

6 #Type Error 2: pandas -dev/pandas:a3e903

7 elif (is_extension_array_dtype(left) or\

8 - is_extension_array_dtype(right)):

9 + (is_extension_array_dtype(right) and not is_scalar(right))):

10 return dispatch_to_extension_op(op, left , right)

Listing 2: Two type errors that TypeFix fail to fix

The second reason is that the CodeT5 model TypeFix uses some-
times cannot generate the correct patches even if the correct fix
template is given. By comparing Table 1 and Table 2, we can find
that fix templates mined by TypeFix can cover 83 bugs in TypeBugs
but only 55 of them are correctly fixed. This indicates the limitations
of CodeT5 when generating candidate patches from code prompts.
We also show an example as the second type error of Listing 2. In
this type error, we need to add a new condition as the guards and
this fix pattern is commonly used in the wild. However, CodeT5
cannot give is_scalar as the new condition and thus TypeFix fails
to fix this type error. We believe this limitation can be mitigated
by using more advanced code pre-trained models, as the parameter
size of CodeT5 is only 220M.

Answer to RQ3: TypeFix sometimes fails to fix type errors due
to the limited performance of pre-trained code models and a few
cases (∼ 25%) that mined fix templates cannot cover.

6 RELATEDWORK

6.1 Automatic Program Repair

As an important method to improve the reliability of software,
automatic program repair (APR) has draw a lot of attention [12, 31]
in recent years. Currently, most APR approaches can be classified
into rule-based approaches and learning-based approaches.

Rule-based Approaches. Rule-based APR approaches leverage
pre-defined templates and rules to generate patches for bugs via
static and dynamic analysis. There are a series of rule-based APR
approaches designed for Java programs via constant-solving [28,
54], fuzzing [11], testcase generation [53], bytecode mutation [13],
and for the memory bugs of C programs [10, 16, 17, 20, 55]. For
Python programs, PyTER [33] utilizes nine pre-defined templates
with type-aware fault localization to repair type errors. Traditional
rule-based approaches are domain-aware but can be used to fix a
limited amount of real-world bugs. TypeFix addresses this challenge
by automatically mining fix templates from real-world bug fixes.
Different from previous work on mining code edit patterns [2, 6,
38, 39], TypeFix implements a novel fix template design to handle
type errors at different levels.

Learning-based Approaches. Learning-based APR approaches
become quite popular and demonstrate their superior performance
recently. Motivated by the study [47, 48, 56] of neural machine trans-
lation (NMT) [43], there are many research efforts being devoted to
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NMT-based APR approaches. SequenceR [5] presents a sequence-
to-sequence LSTM model for program repair. DLFix [23] leverages
tree-based RNN to transform code inputs and generate patches.
CoCoNuT [26] separates the context and buggy line in NMT-based
APR. CURE [19] is the first approach that integrates pre-trained
models in NMT-based APR, followed by work [7, 27]. Recoder [58]
generates code edits instead of modified code. RewardRepair [57]
uses execution-based backpropagation to improve the compilation
rate of patches generated by NMT-based APR approaches. AlphaRe-
pair [52] is the first prompt-based APR approach that transforms
the APR problem into a fill-in-the-blank problem. However, gen-
eral domain-unaware prompts AlphaRepair uses can hardly handle
complicated type errors. TypeFix addresses the problem by incorpo-
rating domain knowledge with proposed fix templates and mining
them through existing type error fixes.

6.2 Pre-trained Language Models

Making use of large-scale unlabeled data in the wild, pre-trained
language models are proven to be quite effective in the natural
language processing (NLP) field. Inspired by such a success, many
code pre-trained models are proposed. Most code pre-trained mod-
els utilize the same Transformer [45] structure. CodeBERT [8] is
a BERT-style model pre-trained on both programming languages
and natural languages. GraphCodeBERT [15] utilizes the data flow
graphs in the pre-training stage. CodeGPT [25] is a GPT [37]-style
model pre-trained on Python and Java functions. Codex [4] is a GPT-
style model created by fine-tuning the GPT3 [3] model to generate
Python functions. CodeT5 [49] is an encoder-decoder model pre-
trained on CodeSearchNet [18]. Recently prompt learning [24, 46]
draws a lot of attention. By transforming downstream tasks into
fill-in-the-blank problems, code pre-trained models can be directly
used for automatic program repair via predicting appropriate code
tokens required to fix bugs [36, 41, 52].

7 CONCLUSION

We propose a domain-aware prompt-based approach named Type-
Fix for repairing Python type errors. TypeFix improves prompt-
based approach by incorporating domain-aware fix templates. Type-
Fix implements a novel fix template design to handle type errors
at different levels, and mines fix templates via a novel hierarchi-
cal clustering algorithm. TypeFix incorporates domain knowledge
into code prompts by applying fix templates into buggy code and
invokes code pre-trained models to generate candidate patches
from code prompts. Experiments demonstrate the effectiveness of
TypeFix and the usefulness of fix templates mined by TypeFix.
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