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Abstract—Large Language Models (LLMs) are widely adopted
for assisting in software development tasks, yet their performance
evaluations have narrowly focused on the functional correctness
of generated code. Human programmers, however, expect AI
assistants to generate not only correct but also optimally efficient
code. We propose PERFCODEGEN, a training-free framework
that enhances the performance of LLM-generated code by incor-
porating feedback based on runtime during test case execution
into the self-refinement iterations. With PERFCODEGEN, we
achieve speedups for a significantly higher proportion of problems
compared to using the base LLM with sophisticated prompting
techniques. Applied to open-weight language models like Phi-3-
mini, PERFCODEGEN achieves code optimization rates compara-
ble to naive prompting of powerful closed models like GPT-4. We
achieve state-of-the-art code optimization on benchmarks such as
HumanEval, MBPP, and APPS, frequently surpassing the ground
truth reference solutions with PERFCODEGEN using GPT-3.5
and GPT-4. Additionally, we demonstrate the effectiveness of our
approach in enhancing code quality across a range of open-weight
LLMs of varying sizes including Phi-3-mini (3.8B), Llama 3 8B,
Mixtral 8x7B (13B active), Command R (35B), and Llama 3 70B.
PERFCODEGEN’s effectiveness at generating performant code
underscores the importance of integrating execution feedback
into the code generation process, highlighting a path forward for
more robust and reliable AI-driven software development.

Index Terms—Large Language Models, Code Generation,
Efficient Code, Runtime Efficiency, Code Optimization

I. INTRODUCTION

Large Language Models (LLMs) are now widely used for
code completion [1], [2], [3], as well as for tasks like unit test
case generation [4], bug fixing [5], feature addition [6], and
other stages of software development [7], [8]. A recent Github
survey [9] highlights this rapid proliferation, estimating that
92% of U.S. based developers are already using AI coding tools.
However, despite this widespread adoption of LLMs, evaluation
has almost exclusively focused on the functional correctness
of generated code [10], [11], [12], [13], often overlooking
other key aspects of code quality. Runtime efficiency of a
program, in particular, is a central consideration in software
design, due to its significant impact on user experience, serving
costs and carbon footprint of a software application [14], [15].
Recent work [16] studying non-functional requirements such
as efficiency, security and maintainability of LLM-generated
programs reveals that current models generally falter on these
key quality metrics. This is particularly concerning, as less
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experienced developers have been shown to be more likely to
accept AI-suggested code [17], often neglecting quality aspects,
which burdens the code review and maintenance stages [18].

Some prior work [19], [20] has proposed fine-tuning LLMs
to generate performance improvements for a given working
program. However, this approach is challenging to scale due
to the need for parallel training data in the code domain,
which can be significantly more expensive to collect and
manually validate than natural language data. Additionally,
these methods require the availability of a functionally correct
input program to optimize, which is not typically the case when
writing code from scratch. Moreover, they do not leverage
execution feedback from unit tests, which has been shown
to be crucial in improving code correctness [21]. This lack
of execution feedback utilization is a notable limitation, as
unit tests provide valuable insights into runtime behavior and
performance characteristics of a program under test.

Prompting advances such as Chain of Thought [22], [23] and
Self-Refine [24] have enhanced LLM output quality without
additional training, but limitations remain, including issues with
hallucinations, sycophancies, and unreliability in refining initial
responses [25], [26], [27]. To address these, several recent
works [28], [29], [30], [31], [32] have proposed providing
verbal feedback or grounding from an automatic tool or
environment to the LLM during the refinement stage. However,
these approaches often do not assess or improve on quality
aspects beyond mere functionality when generating code.

We propose PERFCODEGEN, a framework that leverages
code execution feedback in the iterative self-refinement stages
of an LLM to improve the performance of generated code
beyond merely ensuring functional correctness. First, we use
environment feedback based on unit test execution to self-
refine code generated from the base LLM for correctness. This
yields a larger set of correct solutions for our framework to
optimize, increasing the likelihood of generating an optimally
efficient program in the subsequent optimization phase. For
performance refinement, we first assess the runtime required
by correct solutions for each unit test. We then provide
verbalised performance feedback to the LLM indicating the
most expensive unit test encountered during execution and
instruct it to optimize the previously generated solution
using this feedback. The performance feedback is designed
to resemble how a human programmer would optimize a
program by identifying the most time-consuming portions of
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Fig. 1. PERFCODEGEN Given a problem description (1), we prompt the LLM to generate a candidate solution (2), which is passed to an execution environment
to collect feedback on correctness (3). The LLM is then prompted to self-reflect on this feedback in a planning stage, and accordingly generate a refinement
using this context (4). This process is iterated over till correctness (4-2-3). Correct code obtained from this phase is self-refined for runtime-efficiency (7), and
then passed to the environment to be executed (5) and the most time-consuming unit test(s) is identified and passed as performance feedback to the LLM (6),
that acts on it by generating a self-refinement to make the correct solution more efficient (7). This refinement is tested for correctness (2, 3) and passed as the
final code solution to the problem (8) if correct, else we fall back to the correct program from (3) if any.

it. We evaluate PERFCODEGEN’s effectiveness in generating
runtime-efficient code on tasks from three widely used Python
programming benchmarks: HumanEval [1], MBPP [2] and
APPS [10]. We use 5 open-weight and 2 closed language
models of varying sizes (Phi-3-mini 3.8B, Llama 3 8B, Mixtral
8x7B (13B active), Command R 35B, Llama 3 70B, GPT-3.5
and GPT-4), and witness consistent and significant gains in the
correctness and runtime efficiency of LLM-generated programs
with PERFCODEGEN’s verbalised execution feedback.

Our work is organized as follows: In Section II, we provide
a detailed methodology of the proposed PERFCODEGEN frame-
work. Section III presents experimental results demonstrating
its effectiveness, accompanied by ablations comparing it with
several other prompting approaches in Section III-C. We present
a discussion on the limitations and threats to validity of our
work in Section IV. In Section V, we discuss related work,
followed by a brief conclusion in Section VI.

II. PERFCODEGEN METHODOLOGY

We begin by prompting a given LLM with a problem
description x in natural language that details the requirements
of the program to be generated. We sample K candidate
generations C = {yix}i=1...K with nucleus sampling. We use
execution feedback to refine the incorrect programs within C in
order to increase the number of correct programs in this initial
seed set. In the subsequent performance optimization stage, we
provide verbalised feedback to the LLM indicating the most
expensive unit tests for a code solution and obtain a refinement
using this performance feedback - 1 per correct program from
the pool of k programs generated in the correctness phase.
We detail the correctness enhancement phase in Section II-A,
and the performance refinement phase in Section II-B. Figure
1 illustrates the overall PERFCODEGEN framework with its
correctness and performance improvement phases.

A. Generating Correct Code

We assess the correctness of LLM generated programs using
a set of J unit tests U(x) = {uj

x}Jj=1 corresponding to a
problem x. After assessing correctness of all candidates, we
iteratively refine incorrect ones based on execution feedback
from the unit tests. For any yix ∈ C that fails any of the unit
tests, we prompt the LLM again, this time incorporating the
environment feedback for correctness verbalised as part of the
prompt along with the failed solution and one of the failing
unit tests. The LLM is instructed to reflect and plan, and then
generate a refined correct solution based on the intermediate
reflection and planning result (prompts in Figure 2).

The inclusion of a reflection-planning phase, as suggested
by prior work [22], [23], increases the likelihood of the
LLM generating a correct solution. The final refinement of
yix generated by the LLM is then tested for correctness, and
is passed for the performance optimisation stage if it passes
all the unit tests. Subsequently, a set Ccorrect is constructed by
removing incorrect samples from C and including their refined
versions, if any of them achieve correctness. We could continue
this iterative approach to further improve the correctness rate of
a given LLM, but to minimize computational costs, we pause
after this one iteration. Besides, we observe that the gains
in correctness significantly diminish after the first iteration
of refinement. Note that this stage is shared across all the
different performance refinement methods studied in this work.
Having a larger number of correct candidates as seeds for
performance refinements benefits the framework’s effectiveness,
as this implies higher likelihood of PERFCODEGEN generating
an optimally efficient program. The problem x is considered
as unsolved for correctness by the given LLM if Ccorrect = ϕ.



B. Optimising Correct Code using Execution Feedback

For all correct solutions yix ∈ Ccorrect that are constructed
using the samples and refinements as described in Section II-A,
we prompt the model to (self-)refine its solution to optimise
performance while preserving functional equivalence. If this
refinement breaks correctness, we stop and return the fastest
program from Ccorrect. If this refinement preserves correctness,
we identify the unit test that this refined solution spends the
most time on, and provide it as part of the feedback to the LLM
for further performance refinement. This approach mirrors how
developers would identify the most time consuming pieces (hot
spots) or performance bottlenecks in their code to come up
with runtime improving code changes.

To identify such an informative unit test uf
x, we measure

the execution time consumed by our initial refinement (still
denoted by yix for simplicity) to pass each available unit test uj

x

corresponding to the given problem x. This involves conducting
E independent executions for each solution-test pair in identical
compute environments. After sorting this set of E observations,
let t(yix, u

j
x)[e] be the e-th smallest execution time consumed

by yix on the j-th unit test uj
x. We then calculate the empirical

estimate of the expected execution time of a solution on a unit
test, excluding the two outliers (smallest and largest execution
times) to minimize the impact of potential measurement noise
as follows:

t̂(yix, u
j
x) =

1

(E − 2)

E−1∑
e=2

t(yix, u
j
x)[e]; (1)

uf
x = argmaxuj

x
t̂(yix, u

j
x). (2)

Our approach banks on the hypothesis that the f -th unit test
uf
x of a problem x, that corresponds to the largest execution

time, as defined above, can be highly informative in optimising
the performance of yix if included in the feedback to the LLM
for generating a revision. Therefore, we re-prompt the model
with its latest generation yix, its most time consuming unit
test uf

x and an instruction to optimise the performance given
this feedback (prompt in Figure 3). This leads to a refinement
denoted by ỹix. The fastest amongst the refined correct outputs
({ỹix| ỹix passes correctness}i=1...K) is considered as the final
performant solution for x. Unlike the correctness phase, we
employ the greedy decoding algorithm (sampling temperature
set to 0) in this stage of performance refinement, as we
intend to collect only one refinement per correct code piece
to minimize LLM inference costs. If none of the refinement
ỹix pass correctness, we fall back to the fastest correct base
solution from Ccorrect, where fastest from Ccorrect is also found
using E executions on all unit tests. Similar to optimising for
correctness, we could continue refining for performance with
more iterations, or include a planning step before refinement,
but we pause after this one iteration without the planning step
for algorithmic simplicity and lower inference costs.

III. EXPERIMENTS

We describe the experiments demonstrating the effectiveness
of PERFCODEGEN for generating runtime-efficient programs

in this Section. Section III-A outlines our experimental setup,
Section III-B provides the main results with all the models on
the HumanEval and MBPP benchmarks. In Sections III-C and
III-D, we compare PERFCODEGEN’s execution feedback and
planning scheme with alternative prompting strategies.

A. Setup: Metrics, Datasets and Models

To evaluate the correctness and runtime-efficiency of LLM-
generated solutions using different approaches, we follow prior
work [19] to compute the below metrics using the fastest
(Best@k) LLM-generated correct program out of k samples.
• Percent Optimized [%Opt]: The proportion of problems

where the fastest correct LLM-generated program yx is more
runtime-efficient (at least 10% faster) than the ground truth
reference program gx.

100

N
·
∑
x

1∑
j t̂(yx,u

j
x)<0.9·

∑
j t̂(gx,u

j
x)

(3)

• For a consistent evaluation across multiple LLMs, this
proportion is computed on the subset of problems in the
test set where all baseline LLMs have at least one correct
solution (details of benchmark in Appendix VIII-A).

• Percent Correct [%Correct]: The proportion of problems
in the test set where the LLM generates at least one correct
solution out of k candidates.

• Speedup: For problems where we obtain atleast one correct
LLM-generated program yx, we calculate speedup as the
absolute ratio between the execution time (to pass all unit
tests) required by the ground truth reference program gx
and the execution time required by the fastest correct LLM-
generated program yx.

∑
x

∑
j t̂(gx, u

j
x)∑

x

∑
j t̂(yx, u

j
x)

(4)

Following prior work [16], we rely on an empirical esti-
mation of the execution time of Python programs (averaging
over repeated executions after excluding outliers), despite its
drawbacks and challenges like high compute requirements.
While tools like the gem5 simulator [33] reliably and efficiently
determine CPU cycles of a program, they do not offer support
for Python. Nevertheless, our qualitative analysis (Listing 1,
2) confirms that the differences observed in execution time (t̂)
correspond to clear differences in coding patterns. To estimate
the execution time of a candidate solution, we use E = 12
executions for each unit test as described in Equation (1). We
then compute the above three metrics using the fastest correct
program yx obtained from k (Best@k) candidates. If there are
multiple ground truth solutions, we only use the fastest one as
the reference for computing all metrics. We study the impact
of sampling budget on the effectiveness of our framework by
using 3 different settings with k ∈ {1, 8, 20}.

We perform our analysis by treating %Opt as the superior
metric over speedup when comparing different methods. A
method achieving higher %Opt would be considered more



TABLE I
%OPT, %CORRECT AND SPEEDUP RESULTS ON HUMANEVAL AND MBPP WITH k OF 1 AND 8.

Model Method Best@1 Best@8

%Opt (±δ) %Correct (±δ) Speedup %Opt (±δ) %Correct (±δ) Speedup

HumanEval

Phi-3-mini Base 14.63 51.83 1.24 35.98 78.05 1.44
PERFCODEGEN 18.29 (+3.66) 57.32 (+5.49) 1.23 40.85 (+4.87) 85.37 (+7.32) 1.68

Mixtral-8x7B Base 9.43 27.04 1.31 19.5 63.52 1.37
PERFCODEGEN 11.32 (+1.89) 32.70 (+5.66) 1.31 27.67 (+8.17) 75.47 (+11.95) 1.71

Command R Base 19.02 54.6 1.37 25.15 71.17 1.43
PERFCODEGEN 20.25 (+1.23) 57.06 (+2.46) 1.37 32.52 (+7.37) 79.75 (+8.58) 1.46

Llama 3 8B Base 15.85 56.71 1.35 29.88 76.22 1.39
PERFCODEGEN 17.07 (+1.22) 62.80 (+6.09) 1.29 31.10 (+1.22) 81.71 (+5.49) 1.62

Llama 3 70B Base 24.39 75.61 1.39 33.54 84.15 1.42
PERFCODEGEN 25.61 (+1.22) 84.76 (+9.15) 1.62 39.02 (+5.48) 93.29 (+9.14) 1.71

GPT-3.5 Base 16.05 54.94 1.37 29.63 78.4 2.34
PERFCODEGEN 22.22 (+6.17) 67.28 (+12.34) 1.34 38.89 (+9.26) 90.12 (+11.72) 2.33

GPT-4 Base 24.54 72.39 1.81 39.26 88.96 1.82
PERFCODEGEN 28.83 (+4.29) 87.12 (+14.73) 1.68 46.63 (+7.37) 94.48 (+5.52) 1.91

MBPP (test)

Phi-3-mini Base 20.26 61.21 2.61 38.36 75.86 3.16
PERFCODEGEN 20.26 (+0.00) 69.40 (+8.19) 2.50 44.40 (+6.04) 84.48 (+8.62) 3.03

Mixtral-8x7B Base 11.26 45.95 1.46 22.07 66.67 1.63
PERFCODEGEN 13.06 (+1.8) 53.15 (+7.2) 1.34 38.29 (+16.22) 78.38 (+11.71) 2.83

Command R Base 15.86 55.51 1.68 25.11 69.16 2.27
PERFCODEGEN 17.18 (+1.32) 56.83 (+1.32) 1.73 31.72 (+6.61) 75.33 (+6.17) 2.78

Llama 3 8B Base 16.02 59.74 2.21 28.14 71.86 2.23
PERFCODEGEN 17.75 (+1.73) 68.40 (+8.66) 1.91 32.90 (+4.76) 82.68 (+10.82) 3.03

Llama 3 70B Base 18.92 65.32 1.44 26.13 77.93 1.63
PERFCODEGEN 17.12 (-1.8) 68.47 (+3.15) 1.68 34.68 (+8.55) 88.29 (+10.36) 2.21

GPT-3.5 Base 44.1 66.38 3.42 57.21 76.86 3.69
PERFCODEGEN 47.16 (+3.06) 73.36 (+6.98) 4.19 71.18 (+13.97) 88.21 (+11.35) 4.13

GPT-4 Base 20.87 72.17 2.76 43.48 82.17 2.85
PERFCODEGEN 30.87 (+10) 86.52 (+14.35) 2.70 56.52 (+13.14) 93.91 (+11.74) 4.01

effective than one with lower %Opt, irrespective of the speedups
observed. A larger proportion of tasks solved optimally would
generally be more preferable than a fewer proportion of tasks
solved more optimally. Speedup should only be analyzed in
conjunction with %Opt and %Correct, not in isolation, as it
is defined on the problems where we obtain a correct LLM-
generated program. Note that the %Correct metric is equivalent
to the commonly reported pass@k, when n = k. However,
since our approach leverages unit tests in execution feedback,
it is not fair to compare our correctness metric with those from
previous works [29] that do not assume access to unit tests,
and instead reserve them for correctness evaluation. Our study
presents an alternative formulation where we seek to generate
a program with optimal runtime efficiency, given all unit tests
for a task. Our proposed framework can nonetheless be applied
in settings where we do not have any unit tests, by generating
synthetic unit tests for a problem using LLMs [4], [29]. For
simplicity, we instead re-purpose the HumanEval, MBPP and
APPS datasets which include tests commonly used to evaluate

LLMs on programming tasks. Appendix VIII-A details our
pre-processing and dataset sanitisation steps.

We include open weight LLMs of varying sizes in our
experiments: Phi-3-mini 3.8B [34], Llama 3 8B [35], Mixtral
8x7B (13B active params, [36]), Command R 35B, Llama
3 70B. We also include the closed and commercial GPT-3.5
[37] and GPT-4 models via OpenAI APIs. We provide the
details of our OpenAI API usage, LLM hosting and inference
environment, and code execution environments in Appendix
VIII-B. Note that given our choice of Python datasets, we
are unable to compare with [24] where CodeLlama 13B was
fine-tuned for generating C++ performance improvements.

B. PERFCODEGEN Results

We report the performance of all candidate LLMs on
problems from HumanEval and MBPP (test) in Table I
using our PERFCODEGEN framework and the aforementioned
metrics, with a sampling budget of k = 1 and 8 samples.
Gains in %Opt and %Correct observed by applying our
PERFCODEGEN framework are indicated in the relevant cells



(±δ) for each model. On both the benchmarks, we witness that
PERFCODEGEN leads to significant improvements in %Opt
and %Correct for all candidate base LLMs at both the sampling
budgets (k of 1 and 8). Statistical significance of these results
is established in Section VIII-E.

An example of PERFCODEGEN’s output for a HumanEval
problem is shown in Listing 1, where it generates an efficient
iterative approach that is faster than the reference program
which takes a recursive approach. Listing 2 contains an example
from MBPP (test) where PERFCODEGEN leads to an efficient
closed-form solution for computing the average of cubes of
the first n natural numbers, whereas the reference solution
computes this result using an iterative approach.

1 ’’’
2 Problem:
3 The FibFib number sequence is a sequence
4 similar to the Fibbonacci sequnece
5 that’s defined as follows:
6 fibfib(0) == 0
7 fibfib(1) == 0
8 fibfib(2) == 1
9 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3)

.
10 Please write a function to
11 efficiently compute the n-th element
12 of the fibfib number sequence.
13 >>> fibfib(1)
14 0
15 >>> fibfib(5)
16 4
17 >>> fibfib(8)
18 24
19 ’’’
20 # Optimal solution generated by PerfCodeGen
21 def fibfib(n: int):
22 if n == 0 or n == 1:
23 return 0
24 if n == 2:
25 return 1
26 (a, b, c) = (0, 0, 1)
27 for _ in range(3, n + 1):
28 (a, b, c) = (b, c, a + b + c)
29 return c
30 # Original ground truth solution in HumanEval:
31 def fibfib(n):
32 if n == 0:
33 return 0
34 if n == 1:
35 return 0
36 if n == 2:
37 return 1
38 return fibfib(n - 1) + fibfib(n - 2)
39 + fibfib(n - 3)

Listing 1. An optimal solution generated by PERFCODEGEN in HumanEval

1 ’’’
2 Problem: Write a python function to find the
3 average of cubes of the first n natural numbers.
4 ’’’
5

6 # Optimal solution by PerfCodeGen:
7

8 def solution(n):
9 sum_of_cubes = (n*(n+1)/2.0)**2

10 return sum_of_cubes/n
11

12

13 # Original ground truth (suboptimal) in MBPP:
14

15 def solution(n):
16 sum = 0
17 for i in range(1, n + 1):
18 sum += i*i*i
19 return round(sum / n, 6)

Listing 2. An optimal solution generated by PERFCODEGEN in MBPP

On HumanEval (Table I top), with PERFCODEGEN, we
notably enhance the runtime-efficiency of programs generated
by open weight models Phi-3-mini (18.20 %Opt at k = 1) and
Llama 3 70B (25.61 %Opt at k = 1) making them comparable
to GPT-4 in the base setting, which attains the highest base
%Opt of 24.54 (at k = 1). Similarly, with PERFCODEGEN,
open weight models Command R and Llama 3 8B achieve
%Opt of 20.25 and 17.07 respectively, slightly better than
GPT-3.5’s base performance of 16.05 on %Opt. We continue
to observe this trend at the higher budget of k = 8 samples.

While we elevate the performance of open weight models to
match the base performance of closed commercial models, we
witness even higher gains in %Opt and %Correct when using
PERFCODEGEN on the closed GPT-3.5 and GPT-4 models. At
k = 1, the gains in %Opt are 4.29 and 6.17 on GPT-3.5 and
GPT-4 respectively, while the gains on open weight models
are in the lower range of 1.22 to 3.66. Similarly, at k = 8,
we witness gains in %Opt of 9.26 for GPT-3.5 and 7.37 and
GPT-4, whereas the gains for open weight models are in the
range of 1.22 to 8.17. This observation can be attributed to
the differences in the reasoning capabilities of these model
categories, as the effectiveness of the self-refinement stage
heavily relies on the reasoning capability of the base LLM.

When increasing the sampling budget from k = 1 to 8, we
observe improvements in the optimisation rate (%Opt). The
gains with PERFCODEGEN over the base LLM performance
are higher at k = 8 samples for all models than at the lower
sampling budget of k = 1. We also note that despite the higher
correctness and optimisation rate, PERFCODEGEN maintains
similar speedup as the base LLM, demonstrating its ability to
generate runtime-efficient or performant solutions for a larger
number of problems than the base LLM.

On MBPP (Table I bottom), we continue to witness sig-
nificant gains in %Opt when using PERFCODEGEN in all
cases with both k of 1 and 8 samples. Only exception to this
observation is with Llama 3 70B at k = 1, whose performance
marginally drops on MBPP (test) with our method, likely due
to the high variance in estimating %Opt with a single sample.
This drop can be mitigated in practice by leveraging execution
time evaluation to fall back to the base LLM output in cases
where our refinement is correct but suboptimal. However, we
avoid doing so here for a stricter evaluation of our scheme.

Our observations outlined before for HumanEval results also
hold true for experiments on MBPP (test split). Open weight
models with PERFCODEGEN often match the performance of
closed models with base prompting. Optimisation rate (%Opt)
increases with an increase in the sampling budget (k), and
the gains in %Opt with PERFCODEGEN at k = 8 are larger
than the gains at k = 1. Finally, we report larger gains in
%Opt when using PERFCODEGEN with closed commercial



models than the gains with open weight models. We continue to
witness improvements on %Opt and %Correct with all models
and both the datasets when increasing the sampling budget
to k = 20 as listed in Appendix Table V. We provide results
on APPS (test) in Appendix VIII-D, where LLMs struggle to
attain high correctness due to the higher difficulty of problems.

C. Alternatives to PERFCODEGEN’s Execution Feedback

We evaluate some competitive prompting techniques for
the performance improvement phase of PERFCODEGEN as
alternatives to the verbalised execution feedback. Besides naive
prompting, we evaluate 9 different prompting schemes for
this phase using GPT-3.5 as the base model on tasks from
the HumanEval and MBPP (test) datasets. We exclude other
models from this analysis to avoid the high costs associated
with LLM inference. We exclude the significantly larger APPS
test set from this comparative analysis, which contains roughly
20x more problems, each with approximately 3x as many test
cases on average, making it prohibitively expensive to perform
a comprehensive analysis with multiple prompting schemes.

As possible strategies for the performance refinement phase,
we first consider three single-round prompting methods. First,
we use vanilla prompting for performance improvement,
instructing the LLM to optimize the correct code while ensuring
functional equivalence (Perf Improvement Prompt). Next, we
evaluate a 3-shot In-context learning baseline, which includes
three examples of program refinements along with optimization
instructions. We also assess an improved prompt that includes
common Python optimization tricks as Pre-defined Strategies,
along with the usual optimization instruction. We then consider
two multi-round approaches similar to those in [24], [23]
which include a planning or analysis stage. In the Plan and
Refine approach, we prompt the LLM to generate a plan
for performance refinement, then prompt it again with this
output plan to implement the proposed refinement. In Analyze
and Refine, we prompt the LLM to first analyze the time
complexity of the generated program, then prompt it again
with this intermediate analysis to refine the code.

We also evaluate some multi-agent prompting approaches
as adaptations of ChatDev [38] and MetaGPT [39] for code
optimisation. First, we implement a multi-agent coder-reviewer
setup for performance refinement (Multi-Agent w/ Reviewer),
where a coder refines the base solution and a reviewer provides
feedback, followed by another refinement attempt based on this
feedback. Additionally, we implement a more elaborate variant
with leader-coder-reviewer roles (Multi-Agent w/ Team),
where the three agents take turns planning, refining, and
reviewing code. Finally, we implement two variants leveraging
execution feedback for performance improvements after the
LLM attempts to refine the correct code solution. In the first
variant (Direct Execution Feedback), we execute and evaluate
the effectiveness of the refinement and verbalize the result
(positive if the refinement is faster than the base, negative
otherwise), feeding this feedback to the LLM for another
refinement attempt. Finally, in PERFCODEGEN, as described

in Section II, we provide the most time-consuming unit test as
feedback to the LLM (prompt shown in Figure 3).

Table II lists the %Opt and Speedup results with all the
methods on the HumanEval and MBPP datasets using GPT-3.5.
We observe that the base model generations offer significant
performance optimizations (16.05% on HumanEval and 44.1%
on MBPP) over the ground truth. However, the gains with
Perf Improvement Prompt, multi-round (Plan and Refine,
Analyze and Refine), and Multi-Agent (w/ Reviewer, w/ Team)
techniques are insignificant and often negative. This can be
explained by the cascading of LLM errors [25] over multiple
steps of reasoning. Direct execution feedback produces mixed
results, with a %Opt gain of 5.55 on HumanEval and a drop
of 1.31 on MBPP. In contrast, PERFCODEGEN results in
substantial gains in optimization rate on HumanEval (6.17 gain
in %Opt) and MBPP (3.06 gain in %Opt) problems, validating
the higher performance-improvement effectiveness of execution
feedback verbalised using the most time-consuming unit test.

D. Role of Planning in Correctness Refinement

In this section, we assess the utility of the planning step in
PERFCODEGEN’s correctness phase. Specifically, we compare
the correctness achieved by using direct execution feedback
without a planning step (refining using execution feedback
only) with the correctness achieved using PERFCODEGEN
that utilizes a planning stage after consuming the execution
feedback (plan then refine). Prompts corresponding to these
two approaches are presented in Figure 2 in the Appendix.

We implement the (direct) Testcase Feedback approach as
follows: starting with the base LLM generation, we evaluate
correctness based on available unit tests and instruct the LLM to
refine its solution according to the environment output (Figure
2(b)). In contrast, PERFCODEGEN incorporates an additional
planning step based on verbalized environment output (failure
type on the unit tests). The generated plan is then included in
the prompt for refinement in the subsequent step.

Results with these two approaches are shown in Table III
on the HumanEval and MBPP datasets with GPT-3.5 and
Llama 3 70B. Both approaches achieve higher correctness than
the base LLM. With k = 1, we observe that the additional
planning step of PERFCODEGEN often leads to slightly lower
correctness gain compared to the direct approach. However,
with a k of 8 and 20, we observe higher correctness rate with the
planning step. Notably, PERFCODEGEN achieves the highest
correctness rates on both benchmarks, underscoring the utility
of its additional planning step. As discussed in Section II-A,
a high correctness rate is essential for generating optimized
solutions effectively across a larger proportion of problems.
PERFCODEGEN is more likely to produce maximally optimal
solutions by refining from a larger pool of correct candidate
solutions, benefiting from the greater diversity within the seed
set. These results also suggest that the planning step could
also be effective when included in the performance refinement
phase at the cost of additional LLM inference.



TABLE II
COMPARISON OF PERFCODEGEN ALTERNATIVES IN THE PERFORMANCE-REFINEMENT STAGE (k = 1 SAMPLE) USING GPT-3.5.

Prompting Method
Summarized Instruction(s)

HumanEval MBPP (test)

%Opt (±δ) Speedup %Opt (±δ) Speedup

Base LLM Generation
GPT-3.5 prompted to solve a problem 16.05 - 1.37 44.1 - 3.42

Perf Improvement Prompt
Optimize given code, maintaining equivalence 19.14 (+3.09) 1.39 44.1 (+0.00) 3.45

In-context learning
+ Here’s an example of optimisation: {demo} 19.14 (+3.09) 1.38 44.98 (+0.88) 3.20

Pre-defined Strategies
+ Here are common ways to optimize: {strategies} 16.67 (+0.62) 1.27 32.75 (-11.35) 2.86

Plan and Refine
(a) Generate optim. plan (b) Optimize w.r.t. plan 19.14 (+3.09) 1.34 45.85 (+1.75) 3.30

Analyze and Refine
(a) Analyze O time (b) Optimize given (a)’s analysis 18.52 (+2.47) 1.35 46.29 (+2.19) 3.32

Multi-Agent w/ Reviewer
(a) Coder: Optimize (b) Reviewer: Suggest changes 18.52 (+2.47) 1.25 41.48 (-2.62) 3.57

Multi-Agent w/ Team
(a) Leader: Plan optim (b) Coder Optimize

w.r.t. plan (c) Reviewer: Suggest changes to b
20.37 (+4.32) 1.28 42.79 (-1.31) 3.20

Direct Execution Feedback
(a) Optimize (b) It worked/didn’t, try again 21.60 (+5.55) 1.38 42.79 (-1.31) 3.58

PERFCODEGEN
(a) Optimize given code (b) Your costliest
unit test is { test }, optimize accordingly

22.22 (+6.17) 1.34 47.16 (+3.06) 4.19

TABLE III
%CORRECT USING GPT-3.5 AND LLAMA 3 70B AT k OF 1, 8 AND 20.

Method Best@1 Best@8 Best@20

GPT-3.5 on HumanEval

Base 54.94 78.40 84.57
Test Case Feedback 72.84 85.80 90.74
PERFCODEGEN 68.52 90.12 93.83

Llama 3 70B on HumanEval

Base 75.61 84.76 89.02
Test Case Feedback 84.76 90.24 92.07
PERFCODEGEN 85.37 93.90 95.12

GPT-3.5 on MBPP (test)

Base 66.38 76.86 79.48
Test Case Feedback 78.60 90.83 91.27
PERFCODEGEN 73.36 88.21 92.58

Llama3 70B on MBPP (test)

Base 65.32 77.93 81.53
Test Case Feedback 72.97 87.39 91.89
PERFCODEGEN 68.47 88.29 93.24

IV. DISCUSSION

In this section, we present a discussion on the limitations
and threats to validity of our work.

A. Limitations and Future Work

The challenge of writing performant and high-quality soft-
ware with LLMs spans various levels of granularity, from line-
level optimizations to multi-class project repositories [40]. In
our current scope, we focus on generating performant modules
or Python functions, which are typically small components
of real-world systems. However, addressing this challenge
comprehensively should ideally involve ensuring architectural
design patterns such as minimal redundancy or wasteful
computation across the entire scope of a project or repository.

Another limitation is our focus only on measuring the
runtime performance of LLM-generated code, disregarding
memory consumption, which can be a crucial consideration
in many applications. Future extensions of PERFCODEGEN
could prioritize optimizing for both aspects (runtime and
space complexity) or allow users to specify preferences for
optimization. Additionally, beyond performance, developers
desire attributes like readability, ease of maintenance, security,
and harmlessness [16], [41], which are not accounted for,
within the scope of our current work. While our work could be
adapted to incorporate feedback from different environments
or tools evaluating these attributes, achieving a balance in
optimizing code generation across these dimensions is non-
trivial. Finally, we note that the effectiveness of our approach
is heavily dependent on the code reasoning capabilities of the



underlying LLMs, and future work could consider curating
training strategies specifically for performant code generation.

B. Threats to Validity

As emphasized in prior research, reliably measuring the
runtime performance of code poses significant challenges [19].
A piece of code may exhibit varying execution times across
different compute environments, even with identical underlying
hardware. Tools like the gem5 simulator [33], that are used to
determine the instruction count of a program, do not support
the execution of Python programs to the best of our knowledge.
To mitigate this, we ensure identical compute environments
for each candidate code snippet and run only a single Python
program at any given time to minimize effects from concurrent
execution. However, averaging execution time measurements
from 10 independent runs of each program significantly adds to
our execution costs. Future work could explore more efficient
methods for reliably measuring runtime, by determining the in-
struction count of LLM-generated programs deterministically.

V. RELATED WORK

A large volume of prior work on improving code quality
has proposed a code-to-code editing formulation in the form of
tasks like fixing bugs [42], performance improving edits [19],
[20], improving maintainability [43], [44], and security enhanc-
ing edits [45], [46], [47], [48], [41]. Contrary to this approach,
we formulate a text-to-code task for our work on runtime
efficiency aspect of quality improvements. As programmers
continue to rely on prompting LLMs for generating programs
for repetitive tasks in software engineering [17], [49], [50],
[51], we opine that it is critical for research on code quality
to focus on the prompting stage by studying natural language
inputs that describe developer intent or program specifications.

To improve the general LLM output quality [52] post
the pre-training and supervised instruction fine-tuning [53]
stages, recently proposed algorithms like RLHF [37], [54]
and DPO [55] that use human preference data have become
industry standard [56]. While one could continue to scale these
approaches for improving LLM-generated code quality, this
would require gathering large-scale preference data for code,
which is arguably more difficult and expensive than collecting
natural language response preferences. Besides needing an
extensive number of samples, RL techniques also involve
expensive model fine-tuning and are known to be notoriously
prone to training instabilities [57], [58]. A recent study [59]
bypasses this labeled data limitation and proposes reinforcement
learning using execution feedback (no human supervision) to
improve the functional correctness of generated code. These
training advancements have also been partially extended [60]
to improve the performance aspect of LLM-generated code.

Our work builds upon the success of prior works like Self-
Refine [24], Scratchpads for LLMs [23] and Self-Debug [28]
that propose LLM based self-refinements to improve output
quality by adding intermediate planning or analysis stages
during inference. Our framework is also closely related to
Reflexion [29] that uses environment or tool feedback to

improve LLM output quality, but focuses only on functional
correctness in the context of code generation. Scaling of
inference time computation [61], [62] is emerging as a
prominent theme in improving LLM output quality (functional
correctness for code domain). With PERFCODEGEN, we extend
these ideas to improve program runtime efficiency, an aspect
that has been largely ignored by predominant research on LLMs
in favor of functional correctness.

VI. CONCLUSION

We introduce PERFCODEGEN, a novel framework that
leverages code execution feedback during the iterative self-
refinement stages of LLMs to enhance the runtime-efficiency
of generated code. We show that using our approach, open
weight LLMs like Phi-3-mini can achieve code optimization
rates comparable to naively prompting closed LLMs like GPT-
4. Our evaluation of PERFCODEGEN on three widely used
Python programming benchmarks using both open weight
and closed language models of varying sizes, demonstrates
consistent and significant gains in correctness and runtime
efficiency across tasks from the benchmarks studied. On a large
proportion of the tasks from HumanEval and MBPP, we achieve
programs with state-of-the-art code optimization rates using
PERFCODEGEN, leading to programs that are significantly
faster than the reference solutions present in the datasets. We
find that verbalised execution feedback including the most
expensive unit test has significantly higher effectiveness in
generating performant code than other complex multi-step
and multi-agent prompting schemes. Our findings underscore
the importance of integrating execution feedback into the code
generation process, highlighting a path forward for more robust
and reliable AI-driven software development.

VII. DATA AVAILABILITY

The code of PERFCODEGEN is released at https://github.
com/SalesforceAIResearch/perfcodegen.

VIII. APPENDIX

A. Sanitized Benchmarks

TABLE IV
DETAILS OF SANITIZED BENCHMARKS USED IN THE EVALUATION OF

PERFCODEGEN.

Benchmark #Problem #Groundtruth #Testcase

HumanEval 164 1.0 9.6
MBPP-test 257 1.0 3.0
APPS-test Original 5,000 30.4 21.2
APPS-test Sanitized 3,249 26.9 27.4

Detailed information on the 3 benchmarks we use is
presented in Table IV. We use the sanitized benchmarks
for correctness evaluation and the common subsets for time
efficiency evaluation. In our evaluation process, we initially
verify whether the provided ground truth programs within
each benchmark can successfully pass the associated test cases.
Notably, we identify 1,511 instances in the APPS benchmark

https://github.com/SalesforceAIResearch/perfcodegen
https://github.com/SalesforceAIResearch/perfcodegen


where the ground truth solutions fail to meet the test case
criteria. This observation aligns with previous findings reported
by [63]. To ensure a fair comparison among the different
benchmarks, we exclude the aforementioned 1,751 instances
from our analysis, retaining the remaining 3,249 instances for
correctness evaluation.

Additionally, for assessing runtime efficiency, we construct
subsets from the three benchmarks, comprising problems for
which all baseline methods can generate at least one func-
tionally correct program. Runtime-related data are computed
solely on these subsets, rather than the entire benchmark, to
maintain consistency in evaluation conditions. The metric of
%Opt is then calculated only on the subset of problems where
all baseline LLMs (i.e., the models being compared) have at
least one correct solution. This ensures fairness in comparison
by focusing on problems that all models can solve.

B. Compute

LLM inference: We use the vLLM [64] library on a node
with 16 Nvidia A100 GPUs for approximately three weeks to
complete all the experiments in this work.

OpenAI API: We use the gpt-4-0613 and gpt-3.5-turbo-0125
model endpoints from OpenAI. In total, we required nearly
411k GPT-4 and 1.5M GPT-3 requests for all our experiments,
contributing to the major costs of this study.

Code Execution: We use 40 instances of virtual machines
(n1-highmem-16 GCP instances), each with 16 CPUs and
104 GB RAM for executing all the LLM generated programs
generated in our experiments. We employ these instances
for roughly four weeks to complete the execution of all the
LLM generated programs using different frameworks in our
study. Interestingly, unlike most LLM research, gathering this
environment feedback tends to be the much costlier bottleneck
in our experiments compared to the LLM inference costs.

C. Best@20 Results of PERFCODEGEN for all Models

Results with PERFCODEGEN at the highest sampling budget
of k = 20 in our experiments are provided in Table V.

D. Results on APPS

Results on the APPS dataset are reported in Table VI.
Unlike MBPP and HumanEval which mostly contain basic
Python problems, the APPS [10] benchmark involves tasks
of significantly higher difficulty including problems from
competitions like IOI, USACO and ACM. Additionally, unlike
MBPP and HumanEval where we have a single human written
solution per problem, APPS offers over 25 reference solutions
(on average per problem) authored by programmers competing
on websites like Codewars, AtCoder, Kattis, and Codeforces.
Hence, the difficulty in generating a solution that is more
performant than the best solution from the human written set
is much greater on APPS problems than the HumanEval and
MBPP problems. Given this higher difficulty, we observe a
significantly lower correctness rate compared to HumanEval
and MBPP with all LLMs. With a k of 1, most models fail
to generate a solution more optimal than the best ground

TABLE V
PERFCODEGEN RESULTS ON HUMANEVAL, MBPP AND APPS WITH A k OF

20.

Model %Opt% %Correct Speedup

Best@20 HumanEval

Phi-3 47.56 92.68 1.81
Mixtral-8x7B 42.14 87.42 1.85
Command R 46.63 87.12 2.01
Llama3 8B 43.9 87.2 2.27
Llama3 70B 45.73 94.51 1.84
GPT-3.5 43.21 93.83 2.33
GPT-4 55.21 95.71 1.98

Best@20 MBPP (test)

Phi-3 59.91 89.22 3.40
Mixtral-8x7B 47.3 87.39 3.52
Command R 46.26 85.9 3.21
Llama3 8B 43.72 86.15 3.30
Llama3 70B 44.59 93.24 2.88
GPT-3.5 75.98 92.58 4.25
GPT-4 66.96 95.65 4.16

Best@20 APPS (test)

Phi-3 0.65 21.46 2.83
Mixtral-8x7B 0.59 21.42 1.75
Command R 1.26 34.53 1.05
Llama3 8B 0.95 22.44 2.86
Llama3 70B 1.39 37.08 1.06
GPT-3.5 2.06 51.34 1.24
GPT-4 2.95 72.18 2.57

truth reference for over 1% of the dataset. Nevertheless, using
PERFCODEGEN’s execution feedback, we observe modest
gains in %Opt and speedup, and large gains in %Correct
of GPT-3.5 and GPT-4 generations on APPS-test problems,
whereas open models benefit less due to task difficulty and
their limited reasoning skills. Notably, the gap in correctness
rates between commercial GPT models and open models is
significantly wider on APPS than on simpler problems from
HumanEval and MBPP, highlighting the capability differences
between the two sets of models.

E. Statistical Significance

Our main results are based on findings in Table I and
Table VI, where we report that using PERFCODEGEN leads
to significant gains in the %Opt metric compared to the
base LLM. For results with the GPT-4 model, we compute
the Z-scores to compare PERFCODEGEN’s output with that
of the base model: −0.878 (k = 1) and −1.34 (k = 8)
on HumanEval, −2.588 (k = 1) and −2.947 (k = 8) on
MBPP and −1.8 (k = 1) and −2.675 (k = 8) on APPS. The
improvement obtained with PERFCODEGEN is thus statistically
significant with α < 0.05 on the MBPP and APPS problems,
and with a lower confidence (α < 0.2) on HumanEval which
has a smaller number of problems (164).

F. Prompts

We list the prompts used in PERFCODEGEN to generate
runtime-efficient code solutions in Figure 2 (Correctness Phase)
and Figure 3 (Performance Phase).



TABLE VI
%CORRECT, %OPT, AND SPEEDUP RESULTS ON APPS WITH k OF 1 AND 8.

Best@1 - APPS (test)

Model Method %Opt (±δ) %Correct (±δ) Spdup

Phi-3-mini Base 0.09 6.51 1.03
Ours 0.09 (+0.0) 8.40 (+1.89) 1.00

Mixtral-8x7B Base 0.12 6.33 0.97
Ours 0.19 (+0.07) 7.08 (+0.75) 1.95

Command R Base 0.31 14.27 1.00
Ours 0.43 (+0.12) 16.48 (+2.21) 1.00

Llama 3 8B Base 0.18 9.38 2.29
Ours 0.25 (+0.07) 10.21 (+0.83) 2.62

Llama 3 70B Base 0.37 18.65 1.04
Ours 0.31 (-0.06) 19.30 (+0.65) 1.04

GPT-3.5 Base 0.49 25.18 1.33
Ours 0.58 (+0.09) 30.56 (+5.38) 1.32

GPT-4 Base 0.31 36.63 0.98
Ours 0.61 (+0.30) 45.62 (+8.99) 1.26

Best@8 - APPS (test)

Model Method %Opt (±δ) %Correct (±δ) Spdup

Phi-3-mini Base 0.28 13.77 1.86
Ours 0.40 (+0.12) 16.73 (+2.96) 2.02

Mixtral-8x7B Base 0.31 11.02 1.08
Ours 0.40 (+0.09) 14.50 (+3.48) 1.81

Command R Base 0.58 24.86 1.00
Ours 0.86 (+0.28) 28.82 (+3.96) 1.00

Llama 3 8B Base 0.52 15.8 3.07
Ours 0.61 (+0.09) 17.71 (+1.91) 3.07

Llama 3 70B Base 0.65 26.12 1.04
Ours 0.86 (+0.21) 27.94 (+1.82) 1.04

GPT-3.5 Base 1.11 39.92 1.25
Ours 1.48 (+0.37) 46.26 (+6.34) 1.24

GPT-4 Base 1.14 57.75 1.15
Ours 1.96 (+0.82) 65.80 (+8.05) 1.90

Round 1:
Your generated solution for the problem is not correct
and cannot pass the following test case:

{testcase}

The error message is as follows:

“{error}”

Could you please analyze the reason of failure and
propose a strategy to modify your solution so that it
can pass the above test case?
Round 2 :
Could you please modify your solution so that it can
fulfill the requirements in the problem and pass the test
case?
Give your solution as follows. Wrap it with “‘python“‘.

(a) Reflection and Test Case Feedback

Your generated solution for the problem is not correct
and cannot pass the following test case:

{testcase}

The error message is as follows:

“{error}”

Could you please modify your solution so that it can
fulfill the requirements in the problem and do not have
any syntax error?
Give your solution as follows. Wrap it with “‘python“‘.

(b) Test Case Feedback

Fig. 2. The two correctness phase prompts discussed. PERFCODEGEN’s
Reflection and Test Case feedback prompt (Plan then Refine) in (a).
(Direct) Test Case Feedback in (b).



Round 1: Good job! You generated the correct solution
for the problem! Now let’s step further and optimize
the time performance of the solution.
Based on the correctly generated solution, could you
please refine it so that it consumes less time in the
execution?
Please make sure your refined solution is functionally
equivalent with the original solution and do not change
the input-output format and the name of the major
components.
Give your solution as follows. Wrap it with “‘python“‘.
Round 2:
We tested your optimized program and found that
the following test case costs the most time in execution.

{testcase}

Could you please refine your optimized program
according to the test case below?
Please make sure your refined solution is functionally
equivalent with the original solution and do not change
the input-output format and the name of the major
components.
Give your solution as follows. Wrap it with “‘python“‘.

Fig. 3. PERFCODEGEN Testcase Feedback prompt used.
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