1CodeReviewer: Improving Secure Code Review
with Mixture of Prompts

Yun Peng’, Kisub Kim**, Linghan Meng’, Kui Liuf
THuawei Technologies, China
j5DGIST, Daegu, Korea
{yun.p, menglinghan2, kui.liu} @huawei.com
falconlk00 @ gmail.com

Abstract—Code review is an essential process to ensure the
quality of software that identifies potential software issues at an
early stage of software development. Among all software issues,
security issues are the most important to identify, as they can eas-
ily lead to severe software crashes and service disruptions. Recent
research efforts have been devoted to automated approaches to
reduce the manual efforts required in the secure code review
process. Despite the progress, current automated approaches
on secure code review, including static analysis, deep learning
models, and prompting approaches, still face the challenges of
limited precision and coverage, and a lack of comprehensive
evaluation.

To mitigate these challenges, we propose iCodeReviewer,
which is an automated secure code review approach based on
large language models (LLMs). iCodeReviewer leverages a novel
mixture-of-prompts architecture that incorporates many prompt
experts to improve the coverage of security issues. Each prompt
expert is a dynamic prompt pipeline to check the existence
of a specific security issue. iCodeReviewer also implements an
effective routing algorithm to activate only necessary prompt
experts based on the code features in the input program, reducing
the false positives induced by LLM hallucination. Experiment
results in our internal dataset demonstrate the effectiveness of
iCodeReviewer in security issue identification and localization
with an F1 of 63.98%. The review comments generated by
iCodeReviewer also achieve a high acceptance rate up to 84%
when it is deployed in production environments.

I. INTRODUCTION

Code review has been an important step in the software
development process to ensure software quality, as it can help
identify various software issues, including coding style issues,
performance issues, code smells, and security vulnerabilities,
at an early stage of software development [38]. Among all
software issues detected in the code review process, security
issues could result in severe financial losses and service
disruptions. Therefore, secure code review becomes one of the
top goals in the entire code review process of many companies.

Traditional code review is quite time-consuming, as review-
ers need to thoroughly understand the functionality and poten-
tial impacts of the code. To improve the efficiency of software
development, researchers explored many static analysis tools,
such as CppCheck [26] and Flawfinder [7], which are built to
detect flaws and dangerous coding constructs. They typically
rely on well-designed static rules to identify potential coding
patterns that may lead to issues. Given the large number of

categories in security issues, static analysis tools are difficult
to cover real-world corner cases as well as new issues [20].

Recently, deep learning techniques, such as CodeRe-
viewer [15] and T5-Review, proposed fine-tuning a model
based on the history of code reviews submitted by code
reviewers. The fine-tuned models then take the submitted code
as input and generate corresponding code review comments.
However, researchers identified that developers commonly
overlooked security-related issues when reviewing code in
open-sourced projects [5], [40]. For example, Biase et al. [5]
found that only approximately 1% of the review comments are
related to security. This indicates that, in real-world software
development, it is hard to collect sufficient high-quality code
examples for each security issue. Therefore, fine-tuned code
review models cannot be quickly adapted to new security
issues due to a lack of data for these issues [2], [37].

In the era of large language models (LLMs), some prompt
learning techniques are also studied in code review by care-
fully designing prompts to ask LLMs to detect issues directly.
Theoretically, the prompt-based approaches do not suffer from
the insufficient training data of a specific type of security issue;
instead, they rely on the prompts from domain experts and the
rich knowledge from the LLM. However, when deploying the
prompt-based secure code review techniques in our company,
we observe the following challenges:

1) Limited Precision due to False Positives. When iden-
tifying the categories of the security issues with/without
prior knowledge (i.e., related categories knowledge in the
prompt), LLMs can alarm with the security issues that are
impossible to exist in the code (i.e., hallucination). This
leads to lower precision of LLMs when compared with
current static analysis techniques. However, an approach
with high false positive rate will significantly increase the
burden of developers in secure code review, as they have
to frequently check and discuss the validity of generated
code reviews.

2) Limited Coverage due to False Negatives. Different
security issues may require different analysis of the
program state to distinguish and confirm. It is difficult
for current LLM-based approaches to cover most real-
world security issues with a few fixed prompts. Besides,
the performance of LLMs usually drops when it is used
in domain-specific data that is rarely included in the



training datasets. The limited coverage poses great threats
to the code review process as its goal is to ensure the
quality of software by identifying as many software issues
as possible. The missing security issues will require
more efforts to identify in the following software testing
process.

Lack of Comprehensive Evaluation. Currently, there is
no gold standard for evaluating the quality of comments
proposed by code reviewers or automated code review
approaches. For example, prior studies evaluated the
performance of their approaches on the code review
comment generation task with BLEU and ROUGE-L [6],
[31]. While useful, such metrics cannot comprehensively
reflect the quality of generated review comments. This
hinders the direct usage of them in practice.

In this paper, we propose iCodeReviewer, which is a
LLM-based secure code review approach built upon a novel
mixture-of-prompts architecture. The mixture-of-prompts ar-
chitecture incorporates many prompt experts, and each of
them is a dynamic prompt pipeline designed by experienced
developers for one specific security issue. Prompt experts
contain rich knowledge from developers to comprehensively
identify potential security issues, increasing the coverage of
iCodeReviewer. Given the input program, we propose a novel
routing algorithm to select applicable prompt experts for code
review by analyzing the code features in the program. This
indicates that iCodeReviewer only activates highly-related
prompt experts and avoids false positives by deactivating most
irrelevant prompt experts. iCodeReviewer is also extendable to
new security issues by simply adding new prompt experts. To
provide a comprehensive evaluation, iCodeReviewer not only
outputs the review comments, but also identify the security
issue categories and pinpoint the related locations in the
program.

We evaluate iCodeReviewer in an internal dataset of the
company, which contains programs with different security
issues identified by code reviewers in the past. Experiment
results show that iCodeReviewer can achieve an F1 of 63.98%
in real-world security issue identification, and an accuracy
of 47.58% in issue localization. It outperforms current ap- °
proaches for at least 32.11% in issue identification and 26.51% -
in issue localization. Furthermore, more than half of the review
comments generated by iCodeReviewer are instrumental for
developers. iCodeReviewer also significantly improves the
acceptance rate of review comments in production lines by
at least 36.84%.

We summarize our contributions as follows. .

o To the best of our knowledge, we propose the mixture-

of-prompts structure for iCodeReviewer, which is a brand ‘:‘

new prompt approach for software engineering tasks. |

« We design iCodeReviewer, a LLM-based secure code re-

view approach to improve both the precision and coverage

of previous approaches. is

« Extensive evaluation demonstrates the effectiveness of ¢

iCodeReviewer in identifying and localizing security is- '
sues.

3)

TABLE I
THE CWE ISSUES COVERED BY ICODEREVIEWER IN SECURE CODE
REVIEW.

Category SubCategory CWE Issues

Memory Allocation
Memory Access

CWE-131, CWE-401, CWE-789
CWE-129, CWE-785. CWE-806

Memory Memory Release CWE-415, CWE-416, CWE-590, CWE-761, CWE-762
Security Pointer Dereference CWE-476, CWE-690, CWE-823
Pointer Casting CWE-587, CWE-588
Others CWE-134, CWE-562
Number Integer Calculation CWE-128, CWE-191, CWE-193, CWE-369, CWE-1335
Processing Data Size Calculation CWE-467, CWE-469
Sensitive Info Process Exposure CWE-214
Exposure Log Exposure CWE-532
DoS Attack Untrusted Data CWE-502
Improper Control CWE-119
. Command Injection CWE-78
Injection o
SQL Injection CWE-89

« iCodeReviewer has been practically deployed inside the
company and used in real-world software development.

II. BACKGROUND
A. Problem Definition

Code review is a common practice in modern software
development processes. It is usually formalized as a generation
task p — c¢mt, which takes the program p as input and outputs
natural language comments cmt to indicate potential issues.

In this paper, we define secure code review as a multiple-
goal task p — (cat, loc, cmt), which takes a program p
as input and outputs the category cat of the security issues
and its location loc, along with a natural language review
comment cmt for further explanation. This task is generally
more challenging than regular code review, as it also requires
the accurate identification of security issues and locations.
With identified security issues and locations, we can evaluate
the effectiveness of an approach more objectively.

B. Motivating Example to Reduce False Positives

int func (JNIEnv xenv, Jjclass clazz, jstring RootPath
, Jstring DestPath, JjbyteArray data) {
const char xRootPath = (*xenv)->GetString(env,

RootPath, 0);

const char xDestPath = (xenv)->GetString(env,
DestPath, 0);

size_t buffSize = (xenv)->GetArrayLength (env,
data) ;

uint8_t +buff = (uint8_t =)
(xenv) ->GetByteArrayRegion (env, data,
, (jbyte x) buff);

Error ret = OK;

ret = SaveBufferToFile (buff, buffSize,
DestPath) ;

(xenv) ->ReleaseString (env, RootPath, RootPath);
(xenv) ->ReleaseString (env,DestPath, DestPath);

malloc (buffSize);
0, buffSize

RootPath,

if (ret != OK) {
LogOutput (LOG_LEVEL_ERR, "...", ret);
return ret;

}

free(buff);

return 0;

}

Code. 1.
company.

A motivating example simplified from a C program inside the



TABLE II
THE IDENTIFIED CWE ISSUES BY DIFFERENT APPROACHES. CORRECT
PREDICTIONS ARE HIGHLIGHTED IN GREEN COLOR.

Approach Identified CWEs Location
Cppcheck None
FlawFinder None
CodeReviewer None
T5-Review None
CWE-762 (Mi ched Memory M Routines) 15
Qwen-2.5 + CWE-416 (Use After Free) 9, 10
Instruction Prompt ~ CWE-476 (NULL Pointer Dereference) 12
CWE-707 (Improper Enforcement of Message or Data Structure) 56

CWE-78 ("OS Command Injection’)

CWE-476 (NULL Pointer Dereference)

CWE-532 (Insertion of Sensitive Information into Log File)
CWE-401 (Missing Release of Memory after Effective Lifetime)

Qwen-2.5 +
CWE Info Prompt

® 1o o0

@

DeepSeek R1 +

A CWE-670 (Use of Externally Controlled Input) 2,3,4,5
Instruction Prompt
D
eepSeTek Rl + None
CWE Info Prompt
CWE-690 (Unchecked Return Value to NULL Pointer Dereference) 5
iCodeReviewer CWE-476 (NULL Pointer Dereference) 2

CWE-401 (Missing Release of Memory after Effective Lifetime) 11

To better illustrate the motivation of our approach, we show
an example in Code 1. This example is simplified from a real C
program in our company, and it has a Null Pointer Dereference
issue (i.e., CWE-476) at line 2 and a Unchecked Return Value
to NULL Pointer Dereference issue (i.e., CWE-690) at line
5, where the external function argument env and the pointer
buf f are not checked before dereference. Besides, it also has a
Missing Release of Memory after Effective Lifetime issue (i.e.,
CWE-401) at line 11, where the program does not release
the memory bu f f when it handles an error. Developers have
confirmed these issues, which may lead to severe program
errors at runtime.

To understand the performance of existing approaches on
this example, we apply several popular approaches to it.
Table IT shows the identified CWEs and their locations. Note
that we do not include the natural language reviews in the
table to save space.

Static Analysis. Cppcheck [26] and FlawFinder [7] are two
static analysis tools designed to scan potential program flaws
for C/C++ programs. We do not select advanced static analysis
tools that require a compilation database since the compilation
database is usually not accessible in the code review process.
We observe that both Cppcheck and FlawFinder do not identify
any security issues in this example, while their documentation
states that they support the identification of CWE-476 and
CWE-401 issues. This indicates the limited coverage of current
static analysis approaches.

Code Review Models. CodeReviewer [15] and T5-
Review [31] do not output CWE categories and locations.
However, CodeReviewer just generates a comment “Please
remove this blank line.” and T5-Review generates a comment
“The logic from here would be easier to understand if we
used the same ‘tombstone’ as: hasUnusedBuffer(env,DestPath,
DestPath)”. The both comments do not indicate any security
issues and useful suggestions.

LLM-based Approaches. We further evaluate the perfor-
mance of LLM-based approaches on this example, and design
two prompt settings: 1) instructional prompting, where we only
query the LLM to list all possible CWE issues, and 2) CWE
informed prompting, where we give the LLM the concerned
CWE categories (listed in Table I) and prompt the LLM to
check if any of them exist. We employ the prompt settings
on two LLMs, Qwen-2.5 and DeepSeek RI1, to observe the
differences between regular LLMs (e.g., Qwen-2.5) and deep
thinking LLMs (e.g., DeepSeek R1).

From Table II we can see that Qwen-2.5 and DeepSeek
R1 both failed to identify the correct CWE issue based on
the instruction prompt. This suggests that current LLMs are
unable to detect the relevant CWE issues without guidance.
However, when given the knowledge of the concerned CWE
categories, Qwen-2.5 can identify the existence of CWE-476
and CWE-401. This indicates that compared with static
analysis tools, LLMs have a better performance on secure
code review. This motivates us to use LLMs on the secure
code review task with guidance.

Despite the correct identification, Qwen-2.5 misses the

CWE-690 issues at lines 5 and it also provides an incorrect
location for CWE-401 issue. Furthermore, it outputs two addi-
tional CWE categories, which do not exist in the example code,
resulting in a high false positive rate. For example, Qwen-2.5
identifies a CWE-78 issue, but there is no interaction with
the system via system calls in the example code. Therefore,
LLM-based approaches can produce both false positives
and false negatives if we let them examine the relevant issues
one by one.
Our Approach. iCodeReviewer implements a novel mixture-
of-prompts architecture to address current challenges. It does
not prompt the LLMs to check all concerned security issues;
instead, it analyzes the features in the code and identifies the
pointer dereferences and memory allocation in the example
and only activates the prompt expert for checking both issues.
Prompt experts for other security issues are not activated
and will not be identified by iCodeReviewer. By doing so,
iCodeReviewer can minimize the false positives brought by
LLMs. Based on the activated prompt experts, iCodeReviewer
can thoroughly examine the existence of related issues and
accurately capture all issues and locations, avoiding false
negatives.

III. METHODOLOGY
A. Overview

As an LLM-based code review approach, iCodeReviewer
adopts a Mixture-of-Prompts (MoP) approach to particularly
detect security issues and provide review comments. Fig. 1
shows the overall design of iCodeReviewer that consists of
four phases. Similar to the Mixture-of-Experts (MoE) ar-
chitecture used in LLMs, iCodeReviewer hosts a collection
of prompt experts, each of which is manually designed by
senior developers in our company to identify specific types of
security issues (as detailed in Section III-D). iCodeReviewer
first extracts features of the code under review (Phase I). These



Phase I: Feature Extraction

@ Memory Security

L

void main (s{tmcta _pI[).{ __________
int8_t b ={pt * MAX LEN,.

Memory Leak

Code Snippet

Code Parser

L Integer Overflow

e
( Code Features\

1
Ponnter Dereference: i
|/

5
3
31 @
l(.Q
[0
]
5
* =
=i
o
Q
=
o
3

’
.

Fig. 1.

features indicate the existence of potential security issues in
the code and then serve as a router in the MoE architec-
ture to select the relevant prompt experts (Phase II). The
corresponding prompt experts are then activated to confirm
whether the corresponding security issue exists or not (Phase
IIT). iCodeReviewer gathers the identification results from the
activated prompt experts and finally generates the final review
(Phase 1V).

B. Phase I: Feature Extraction

Intuitively, it is unlikely that a code snippet contains all
security issues, as the presence of a specific vulnerability
is typically associated with certain code features. For ex-
ample, a code snippet without any memory allocations will
never exhibit the memory leak issue. Based on this insight,
iCodeReviewer first implements a feature extraction phase to
extract the related features in the input code.

To extract the features, iCodeReviewer leverages a code
parser like tree-sitter [25] to analyze the input code and
transform it into an abstract syntax tree (AST). By traversing
the AST, iCodeReviewer gradually builds a symbol table for
all symbols in the code and collects four kinds of features as
shown below.

Symbol Table. In most programming languages, an iden-
tifier could be regarded as a symbol, and a symbol could
be a class, a function, a variable, etc. In the AST traversal,
iCodeReviewer collects all symbols and tries to infer the nec-
essary properties of them before building the symbol table. To
facilitate the secure code review, iCodeReviewer implements
the following three lightweight code analysis techniques to
infer the properties of symbols:

« Type Inference. It tries to get the type for each symbol by
identifying the definition of each symbol and extracting
the declared types. It also infers types for simple expres-
sions and field accesses.

Phase 1I: Prompt Expert Routing

Null Pointer Dereference

@ Numerical Processing

@ Sensitive Information

Prompt Expert - Null Pointer:
(1) Pointer check analysis
(2) Call relationship analysis
(3) Multiple proposition
determination

Phase I1I: Issue Identification

v Null Pointer Dereference:
TRUE

Prompt Expert - Integer Overflow: (/ |nteger Multlpllcatlon
FALSE

Y
i
o
'

Flnal Review Prompt:
###Code
void main (struct a*ptr){
int8_t b = ptr->len * MAX_LEN;

}
###Category

g -f‘ Memory Security — Null Pointer Deref.
= = #it#Description
#it#Instruction
Final Review Phase IV: Review Generation

The overview of iCodeReviewer.

o Taint Analysis. It infers whether a symbol is assigned
from untrusted sources, such as parameters of functions.

o Value Analysis. It infers the value of a symbol by
analyzing initial declarations and direct assignments.

It is worth noting that the goal of lightweight analysis is to
assist in feature identification, rather than directly detecting
security issues. As such, these analyses are not designed to be
sound or complete and may fail when essential information is
unavailable. iCodeReviewer does not guess the properties of
any symbol to avoid a high false positive rate, and leaves the
unknown property inference for LLMs in the following
phases. The integration of static analysis and deep learning
has been proven effective in program analysis [19], [20].

Features. Symbol table records as the state of the input
program and cannot be directly used to identify potential
security issues. To identify potential security issues, we invite
domain experts from the company to manually inspect the
definitions of security issues and instances in the codebase to
define code features related to the identification of security
issues. When determining code features, we only include
features that can be explicitly verified based on ASTs. For
example, for the Null Pointer Dereference issue, we only
define pointer type and dereference as two features, rather
than the pointer check. This is because pointer type and
dereference can be easily identified based on special syntax
patterns, whereas pointer check is usually implemented using
expressions, external APIs, or macros that require complicated
analysis to identify.

iCodeReviewer collects the features of the following four
kinds of code based on the symbol table:

o APL It identifies all APIs and records the properties of
arguments and return values. It also tracks and analyzes
the implementation of APIs, provided that their defini-
tions are included in the context.



Algorithm 1 Expert Prompt Routing
Input: Symbol table, ST'; Extracted code features, F'; Expert
prompts, EP;
Output: Selected expert prompts, P;
1: F < macroExpansion(F', ST)
2. (EP,, EP,, EP,) < classifyByDependency(E P, ST)
3: for epe EP, + EP, + EP, do

4 > Context-free matching
5: se < getSuspiciousEntities(F', ep)

6: so < getSuspiciousOperations(F, ep)

7 if se # ¢ & so# ¢ & matches(se, so) then

8 P+ P + {ep}

9: end if

10: ec < getExternalCalls(F, se, so, ep)

11: if ec # ¢ then > Context-sensitive matching
12: (ste, Se€c, s0.) < dynamicRetrieve(ec, ep)

13: ST < ST + st.

14: se <— matchSymbol(se, se.)

15: so <— matchSymbol(so, so.)

16: if se £¢ & so# ¢ & matches(se, so) then
17: P+ P + {ep}

18: end if

19: end if

20: end for

« Statement. It identifies the loop statements and return
statements and records the properties of loop variables
and returned arguments.

« Expression. It identifies the arithmetic and casting ex-

pressions and records the properties of operands and

results. It also tracks sub-expressions if multiple sub-
expressions contribute to an expression.

Special Type. It identifies the special types, including

pointer, array, container, struct, macro, and class. It

records the properties of all operations involving these
special types, such as pointer dereference and array
access.

For example, in Fig. 1, there are two features extracted from
the input code snippet: pointer dereference “ptr—len” as it is
an operation involving pointer types and integer multiplication
“ptr—len * MAX_LEN” as it is an arithmetic expression.
The identified code features are then used to activate prompt
experts for certain security issues in the next phase.

C. Phase II: Prompt Expert Routing

Although iCodeReviewer encompasses a wide range of
security issue categories through its prompt experts, it only
activates those relevant to the current code context for ex-
amination. Based on the features extracted in the first phase,
iCodeReviewer implements a prompt expert routing algorithm
to select prompt experts. We present the algorithm in Alg. 1.

Given the symbol table ST and extracted features F,
iCodeReviewer first expands all macros in the code at line 1
to avoid missing critical information in the routing phase. For
example, some macros, such as NODEPTR, may prevent the
identification of pointer types. iCodeReviewer then classifies

all prompt experts into three categories according to their
dependencies with the symbol table at line 2. iCodeReviewer
prioritizes and paralizes the prompt experts with no relation
with the symbol table (EP,), then handles prompt experts
that may read and write the symbol table (E'P,), and finally
processes prompt experts that only read the symbol table
(EP,). This is to prevent the processing of one prompt
expert from interfering with another. For each prompt expert,
iCodeReviewer implements both context-free matching and
context-sensitive matching to handle both the input program
and its associated context.

Context-free Matching. For each prompt expert, we design
a corresponding matching pattern consisting of two compo-
nents: 1) a suspicious entity, which is a code element that
may lead to security issues if incorrectly operated, and 2) a
suspicious operation, which refers to the operations that may
be mishandled. iCodeReviewer activates a prompt expert only
when both the suspicious entity and the suspicious operation
are detected and matched in the extracted features (line 4-9).
For example, to match the prompt expert for the Null Pointer
Dereference issue, iCodeReviewer first locates all pointers
in the current program as suspicious entities and all pointer
dereference operations as suspicious operations. If any pointer
is identified as a suspicious entity involved in a suspicious
operation, iCodeReviewer activates the corresponding prompt
expert to conduct further analysis.

Context-Sensitive Matching. iCodeReviewer follows the
same methodology to select prompt experts but implements
different techniques to collect suspicious entities and opera-
tions. Instead of processing all the context, iCodeReviewer first
identifies the external calls that are related to collected entities
and operations (line 10), and then dynamically retrieves the
useful code elements from the context based on the issue
categories (line 12). For example, in the Double Free issue,
iCodeReviewer only identifies the APIs that free the memory
in the context and discards all irrelevant contents. This could
significantly reduce the code processed by iCodeReviewer in
the routing phase, as the context may sometimes be much
larger than the input programs. For the newly collected sus-
picious entities and operations in the context, iCodeReviewer
matches them back to the symbols in the current program by
handling the argument passing in function calls (lines 14-15).
The prompt expert will also be activated if a match is found
between the new suspicious entities and operations.

The benefits of the prompt routing phase are twofold: 1)
Pruning. iCodeReviewer maintains the ability to cover all
security issues by keeping all related prompt experts, but
it only triggers a few prompt experts in a single review
process by filtering out the irrelevant security issues based
on the characteristics of the input program. 2) False Positive
Reduction. LLMs are not guaranteed to be reliable and could
make mistakes due to hallucination [10]. The prompt routing
phase in iCodeReviewer leverages lightweight static analysis
techniques to reduce false positives by preventing the LLM
from being queried about security issues that are not applicable
to the given code context.



D. Phase IlI: Issue Identification

In this phase, iCodeReviewer sends all activated prompt ex-
perts to the LLMs for security issue identification. This phase
is parallelized for each prompt expert, as the identification of
each security issue is independent.

Prompt experts. Prompt experts are designed to identify
the existence of certain security issues, hence they are essential
for the performance of iCodeReviewer. An prompt expert is a
prompt pipeline that may contain several sequential prompts
(p1, D2, ---, Pn, d) to infer the security issue, where (p1, ..., Pn)
is a series of analysis prompts aiming to infer the state of
the programs, and d is a determination prompt that consider
the results returned by the analysis prompts and determine the
existence of security issues. While different prompt experts
have different determination prompts, they may share similar
analysis prompts, and the prompt pipeline is dynamically con-
structed based on the results of previous prompts. Currently,
iCodeReviewer supports the following analysis prompts:

« Value Inference: This prompt infers the specific value
or value range of a variable.

« Type Inference: This prompt infers the type of a variable.

o Value Check Inference: This prompt infers all checks
implemented for a variable.

o Taint Variable Inference: This prompt infers whether a
variable is assigned from an untrusted source.

« Data/Control Flow Path Inference: This prompt infers
the data flow or control flow paths from one point to
another.

o Call Relationship Inference: This prompt infers the
call relationships between the functions to facilitate inter-
procedure analysis.

The benefit of prompt experts is mainly on the false nega-
tive reduction. We use a prompt pipeline instead of a single
prompt as a prompt expert to simulate the thinking processes
of human reviewers, because security issues are generally
more difficult to distinguish and require a comprehensive
analysis of program states. Furthermore, we break the design
of prompt experts into the combination of analysis prompts
and determination prompts, where the analysis prompts act
like the “shared experts” in the MoE structure and can be
reused for different security issues, and the domain experts
only need to design the determination prompt when adding a
new security issue category.

iCodeReviewer contains 38 prompt experts written by senior
developers. It covers five major categories of security issues:
memory security, number processing, sensitive information ex-
posure, DoS attack, and injection. Table I presents the security
issues that iCodeReviewer currently supports. For instance, the
prompt expert for the Memory Leak issue in iCodeReviewer
generally contains three prompts (p1, p2, d). The first analysis
prompt p; instructs the LLM to analyze the call relationships
in the current program and infer the functionality of external
APIs. This prompt helps to add missing context information.
The second analysis prompt po then instructs the LLM to
extract the data flow paths from the point of memory allocation

to the end of the function. The extracted paths by p, are then
used in the last determination prompt d, where the LLM is
prompted to determine whether any of them exhibit memory
leaks, i.e., at least one path forgets to release the allocated
memory.

Multiple Proposition Answer for Determination Prompt.
Even with the prompt pipeline (p1, ..., pn, d), we still find that
LLMs are likely to produce false positives and negatives due
to hallucination, especially for security issues with complex
identification logic. To alleviate this problem, we further
design the multiple-proposition answer for complex security
issues in the determination prompt d. The key insight is to
decompose complex identification logic into a series of simpler
propositions, requiring the LLM to evaluate each proposition
individually rather than directly determining the presence of a
security issue. As an example, we design two propositions for
the Integer Overflow issue: P1: The result of the operation is
used as array index/pointer offset/circulation border/argument
of memory allocation/length of memory copy. and P2: For any
of the operands, there exists a value check. The LLMs are
queried to evaluate the truth values of individual propositions.
Then, iCodeReviewer finally determines the existence of the
security issue by computing the values of all propositions, e.g.,
(P1 and not P2) in this example.

In this phase, LLMs are only queried to give simple re-
sults of the propositions without explanations. iCodeReviewer
further judges the existence of a security issue based on the
results, and discards the security issues that are determined
not to be present in the current program. iCodeReviewer then
collects all identified security issues and generates a review to
indicate them in the next phase.

E. Phase IV: Review Generation

In this phase, iCodeReviewer aggregates all security issues
that LLMs confirm their existence via prompt experts and
prepares them for review generation. Based on the security
issues identified in the previous phase, iCodeReviewer prompts
the LLM to generate a review comment that includes the
categories, locations, and descriptions of each issue.

When generating the review comment, iCodeReviewer
prompts the LLM to double confirm and rank the identified
security issues. Specifically, iCodeReviewer first provides the
LLM with the input program and all identified security issues,
and prompts it to explain the reasons. This is similar to a chain-
of-thought process that aims to detect potential errors made by
the previous phase. The LLM will remove several identified
security issues if it finds them unreasonable. iCodeReviewer
then collects the remaining security issues and queries the
LLM to generate a complete code review by prioritizing
the issues with higher severity. The severity could be either
configured by users or determined by the LLM itself.

iCodeReviewer finally outputs the generated review for the
input program, which contains the category cat, location loc,
and descriptions cmt of the identified security issues. Devel-
opers and code reviewers can quickly check and verify the
correctness of the generated code review by iCodeReviewer.



TABLE III
THE DISTRIBUTION OF ISSUE CATEGORIES IN OUR INTERNAL DATASET.
“BENIGN” INDICATES THAT THE PROGRAMS DO NOT CONTAIN SECURITY
ISSUES.

DoS
Attack

Memory Number Sensitive Info

. Injection  Benign
Security

Processing Exposure

231 9 51 23 31 337

IV. EXPERIMENT SETUP
A. Research Questions

We focus on the following research questions:

¢ RQ1: How effective is iCodeReviewer on secure code
issue identification compared with existing approaches?

« RQ2: How helpful are the review comments generated
by iCodeReviewer in practice?

o RQ3: What are the impacts of different components in
iCodeReviewer?

B. Datasets

We evaluate iCodeReviewer on an internal dataset collected
from the code reviews in multiple production lines of the
company. The original data contains the locations and review
comments. We invite the developers on the corresponding
production line to label the related CWE categories. The
dataset includes 345 programs with real-world security issues
detected by developers and 337 benign programs that develop-
ers confirm to be false positives. The dataset consists of 360
C/C++ programs, 181 Java programs, 101 Python programs,
and 40 Shell programs. We show the distribution of different
issue categories in Table III.

C. Metrics

As the output of iCodeReviewer contains three parts: iden-
tified issue, location, and review comments, we use different
metrics to evaluate its performance. For security issue iden-
tification, we follow previous work [47] and use multi-class
weighted Precision, Recall, and F1 to handle the unbalanced
distribution of issue categories in our internal dataset. In issue
localization, we define accuracy as the ratio of correctly
identified and located issues to all security issues in the internal
dataset. We define a location as correct if the distance between
it and the ground truth is within 1. For review comments, we
adopt the methodology from Yu et al. [41] and classify all
review comments into four categories:

« Instrumental (I): The generated review comment explic-
itly indicates the existence of the security issue identified
by the reviewer and provides a fully accurate description.

o Helpful (H): The generated review comment raises con-
cerns related to the security issue, but may not be entirely
accurate or specific enough.

« Misleading (M): The generated review comment does
not contain helpful information or has misleading infor-
mation, such as claiming no security issues are found or
reporting a false positive.

o Uncertain (U): The generated review comment points
out other security issues other than the desired one. Due
to a lack of context and knowledge, it is hard to confirm
the existence of identified security issues.

Based on the above four categories, we evaluate the
quality of review comments on the two metrics I-Score =

I _ I+H
mx 100%, IH-Score = mx 100%, and
M-Score = %x 100%. We also add a metric Ac-

ceptance Rate, the ratio of accepted review comments by
developers, to evaluate the practical value of review comments.

D. Baselines

We compare iCodeReviewer with the following two widely
used static analysis tools:

o CppCheck [26]: It is a static analysis tool for C/C++
code. It provides unique code analysis to detect bugs and
focuses on detecting undefined behavior and dangerous
coding constructs.

« Flawfinder [7]: It scans C/C++ source code and reports
potential security flaws.

We also evaluate the performance of iCodeReviewer by
comparing it with the following deep learning-based ap-
proaches:

« CodeReviewer [15]: It is a model pre-trained with code
change and code review data to support code review tasks.

o T5-Review [31]: It is a pre-trained Text-To-Text Transfer
Transformer (T5) for automated code review.

« Instruction Prompt: We use a simple instruction prompt
to reflect the basic performance of LLMs by querying
them to output all potential CWE issues.

e Prompt w/ CWE info [41]: Yu ef al. [41] evaluate
multiple prompting approaches on secure code review
and find that prompts with CWE information perform the
best. We use it to represent the performance of a general
prompt for various security issues.

In accordance with the information protection policy in the
company, we do not use any closed-source LLMs, such as
ChatGPT, as the base models for baselines. Instead, we use the
two open-source models Qwen-2.5 [22] and DeepSeek R1 [4]
for the prompting approaches to observe the performance of
regular and deep thinking LLMs.

E. Implementation

iCodeReviewer has two versions for different scenarios of
secure code review: 1) a web service to review the code
submitted in pull requests, and 2) an IDE plugin to review the
code under development. The initial version of iCodeReviewer
is written in Python. iCodeReviewer uses the tree-sitter li-
brary [25] to parse the code of different programming lan-
guages into ASTs in feature extraction and Qwen-2.5 72B [22]
as the base LLM for issue identification and review generation.
For DeepSeek R1 [4], we choose the DeepSeek-RI-Distill-
QOwen-32B version.



TABLE IV
PERFORMANCE OF CURRENT APPROACHES IN SECURITY ISSUE
IDENTIFICATION AND LOCALIZATION, IN TERMS OF PRECISION, RECALL,
MICRO F1, AND ACCURACY. ‘W/ INSTR* INDICATES THE INSTRUCTION
PROMPT AND ‘W/ CWE*® INDICATES THE PROMPT WITH CWE
INFORMATION. ‘DS R1° INDICATES DEEPSEEK R1.

A Issue Identification ‘ Localization
pproach
Precision  Recall F1 ‘ Accuracy
CppCheck 94.36 7.69 13.17 7.41
FlawFinder 90.16 1.14 1.20 1.14
CodeReviewer 100 0.28 0.57 -
T5-Review 94.25 2.85 5.37 -
Qwen 2.5 w/ Instr 73.58 41.31 45.59 30.20
DS R1 w/ Instr 67.19 4729 4843 3533
Qwen 2.5 w/ CWE 62.48 30.77  39.04 29.06
DS R1 w/ CWE 54.84 43.87 4525 37.61
iCodeReviewer 75.48 62.68  63.98 ‘ 47.58

V. EVALUATION

A. Effectiveness of iCodeReviewer in Security Issue Identifi-
cation and Localization

To evaluate the effectiveness of iCodeReviewer in identi-
fying security issues, we compare it with eight baselines on
the internal dataset. We do not limit the number of security
issues each approach can output to facilitate the evaluation of
their precision. As CodeReviewer and T5-Review only output
a review comment without issue categories, we use Qwen-
2.5 to label the issue categories based on the comments. We
randomly sample 10% of labeled results and find that the labels
are 100% correct.

Issue Identification. Based on the predictions of each
approach, we then calculate the multi-class weighted precision,
recall, and F1 for each approach and present the results in
Table IV. From the table, we observe that iCodeReviewer
achieves the highest F1 of 63.98%, outperforming the best
baseline DeepSeek RI with instruction prompts by 32.11%.
This demonstrates the superior performance of iCodeReviewer
in real-world security issue identification. Although CodeRe-
viewer achieves the highest precision of 100%, its recall is
as low as 0.28%, which indicates that it can hardly capture
security issues in practice. iCodeReviewer still achieves the
highest precision among all LLM-based approaches, benefit-
ing from the mixture-of-prompts architecture. Furthermore,
iCodeReviewer can capture the most real-world security issues
with a recall of 62.68%, outperforming the best approach
DeepSeek R1 with instruction prompts by a large margin.

Issue Localization. Apart from identification, the ability
to accurately pinpoint the security issues is also essential to
help developers quickly understand the problems. We further
calculate the accuracy of locations given by each approach
and list it in the fourth column of Table IV. Note that we
exclude CodeReviewer and T5-Review as they do not output
location information. The results in the table suggest that
iCodeReviewer can accurately identify and locate the most
real-world security issues with an accuracy of 47.58%. This

TABLE V
HELPFULNESS OF REVIEWS GENERATED BY CURRENT APPROACHES. “1”
INDICATES A HIGHER VALUE IS BETTER AND “|” INDICATES A LOWER
VALUE IS BETTER.

Approach I-Score T IH-Score T M-Score |
CppCheck 1.80 5.58 94.42
FlawFinder 1.33 18.00 82.00
CodeReviewer 0.31 0.31 0.70
T5-Review 2.96 5.62 93.50
Qwen 2.5 w/ Instr 21.69 23.83 76.04
DS R1 w/ Instr 12.75 18.44 72.73
Qwen 2.5 w/ CWE 32.53 40.06 59.94
DS R1 w/ CWE 21.72 33.19 65.24
iCodeReviewer 53.94 59.70 40.30

outperforms the baselines by at least 26.51%. Moreover, we
find that the gap between LLM-based approaches in recall for
issue identification and accuracy for localization is generally
larger than that of static analysis tools. This indicates that
LLM-based approaches cannot pinpoint the locations in some
cases, even if they can identify the correct issues.

For both issue identification and location, iCodeReviewer
significantly outperforms current prompting approaches. This
demonstrates the effectiveness of the mixture-of-prompts ar-
chitecture in iCodeReviewer for secure code review. By
routing the input program to only a few prompt experts,
iCodeReviewer can reduce the false positives and identify
more security issues with accurate location.

Answer to RQ1: iCodeReviewer is effective at identifying
and locating real-world security issues with an F1 of 63.98%
and an accuracy of 47.58%, outperforming the best baseline
by 32.11% and 26.51%, respectively.

B. Helpfulness of Reviews Generated by iCodeReviewer

Based on the issue categories and locations, we could
objectively evaluate the performance of existing secure code
review approaches. However, the quality of review comments
is still essential as they can help developers quickly understand
the problems. To evaluate the quality of review comments,
we invite software engineers to manually inspect the com-
ments generated by all approaches for our internal dataset.
Furthermore, we also deploy iCodeReviewer in two production
lines to observe the changes in the acceptance rate of review
comments.

Manual Inspection. We invite three software engineers
with at least five years of experience to inspect the com-
ments generated by all approaches manually. We only pro-
vide them with the comments and locations so that they
can focus solely on the quality of review comments. We
ask the engineers to classify all review comments into four
categories: Instrumental, Helpful, Misleading, and Uncertain,
as stated in Sec. IV. Based on the inspection results, we
calculate the related metrics and present them in Table V.
We identify that iCodeReviewer achieves the highest I-Score



90% 84%

80%
71%
70%
60%
49%
40% 39%
o

30% 26%
20% 19%
- .

%

Production Line #1 - C/C++ Production Line #2 - C/C++

o
=3
ES

Acceptance Rate

=3

=)

Production Line #1 - Java

m Original m Ours

Fig. 2. The acceptance rate before and after deploying iCodeReviewer in two
production lines.

of 52.94%, indicating that more than half of the review
comments generated by iCodeReviewer are indicative and
easy to understand. On the contrary, the best baseline only
achieves an I-score of 32.53%, which is significantly lower
than that of iCodeReviewer. In addition, we find that LLMs
with an instruction prompt obtain much lower IH-Score than
those with a CWE information prompt. This is opposite to
the F1 in Table IV and suggests that the instruction prompt
achieves higher F1 at the cost of producing more misleading
information, increasing the burden on developers.

Production Line Deployment. To observe the performance
of iCodeReviewer in real-world software development, we
deploy it in two production lines for one week and collect
the acceptance rates before and after the deployment. We
present the results in Fig. 2. For production line #1, we can
find that the acceptance rate of iCodeReviewer is 84% for
C/C++ and 71% for Java, which outperforms the original
tool by 71.43% and 82.05%, respectively. This suggests that
developers accept more than 70% of reviews generated by
iCodeReviewer in the production lines. As for production line
#2, iCodeReviewer achieves an improvement of about 36.84%.
However, the acceptance rate in this production line is still
low. A possible reason is that the software developed by it is
generally more complicated and specific to a single domain,
which limits the performance of LLMs.

While better ability in issue identification does not neces-
sarily indicate higher quality of generated review comments,
iCodeReviewer still keeps the good quality of review com-
ments. With the analysis information provided by prompt
experts, iCodeReviewer can generate informative review com-
ments for specific security issues.

Answer to RQ2: Review comments generated by
iCodeReviewer are helpful with an I-score of 53.94% and
significantly higher acceptance rates in production lines.

C. Ablation Study

To verify the usefulness of different components in prompt
experts, we conduct an ablation study by removing them

TABLE VI
ABLATION RESULTS OF ICODEREVIEWER IN SECURITY ISSUE
IDENTIFICATION AND LOCALIZATION, IN TERMS OF PRECISION, RECALL,
MICRO F1, AND ACCURACY.

Issue Identification ‘ Localization
Approach
Precision  Recall F1 ‘ Accuracy
w/o Analysis Prompts 75.60 60.11  62.23 47.01
w/o Multiple Prop. 78.22 58.69  60.24 43.87
w/o Prompt Experts 75.26 4330 4717 37.89
iCodeReviewer 75.48 62.68  63.98 ‘ 47.58

and observing the performance of iCodeReviewer. Table VI
presents the results of issue identification and localization for
an objective evaluation. For the ablation, we do not remove
the routing mechanism in iCodeReviewer since LLMs with
CWE information prompts represent such performance in
Table IV and we have already demonstrated the effectiveness
of iCodeReviewer in RQI.

In Table VI, we observe that the highest decrease of F1 from
63.98% to 47.17% occurs when we replace all prompt experts
with single questions of whether a security issue exists or
not. Without the prompt experts, iCodeReviewer has a similar
performance with the instruction prompts. The significant de-
crease demonstrates that prompt experts are the key component
for the mixture-of-prompts architecture. When removing the
analysis prompts and multiple proposition answers, the F1 of
iCodeReviewer drops from 63.98% to 62.23% and 60.24%,
respectively. This verifies the usefulness of analysis prompts
and multiple proposition answers in identifying more security
issues. The performance drop in both ablations is not as large
as the removal of prompt experts because they are designed
only for some complex security issue categories. As for the
issue localization, the removal of analysis prompts does not
cause a significant decrease since analysis prompts mainly help
determine whether a security issue exists. Multiple proposition
answers contribute more to issue localization since some
propositions indicate location guidance.

Answer to RQ3: Prompt experts in iCodeReviewer play
the most important roles, and removal of them leads to a
significant F1 decrease from 63.98% to 47.17% and an ac-
curacy decrease from 47.58% to 37.89%. Other components
in iCodeReviewer also contribute to its final performance.

VI. THREATS TO VALIDITY
A. Internal Validity

Our study may face the following threats to internal validity.

Subjective Evaluation of Reviews. We evaluate the qual-
ity of review comments generated by iCodeReviewer based
on human judgments. This may introduce subjective factors
that threaten the validity of evaluation results. We mitigate
this threat by using two evaluation methods. We evaluate
iCodeReviewer on the internal dataset by asking several devel-
opers to classify the comments into four categories mentioned



in Sec. IV-C. Besides, we deploy iCodeReviewer in two
production lines and measure the acceptance rates of code
reviews generated by iCodeReviewer. We believe that the
incorporation of different evaluation metrics and developers
could significantly reduce the subjective factors and lead to
solid evaluation results.

B. External Validity

Our study may face the following threats to the external
validity.

Generalization to Other LLMs. While iCodeReviewer is a
prompt framework and could be implemented upon any LLMs,
we only implement it on Qwen-2.5, due to the information
protection policy in the company and the limited computation
budgets. This may threaten the performance of iCodeReviewer
if it is adopted in other LLMs. However, we believe the
adaptation will not significantly hurt the performance of
iCodeReviewer as iCodeReviewer does not require fine-tuning
or use any specific features of the Qwen-2.5 model.

Generalization to Other Companies. iCodeReviewer is
initially built for checking the security issues of our company.
We admit that different companies may target different security
issues. The performance of iCodeReviewer may be influenced
if it is adopted to check new security issues. However, we
believe that iCodeReviewer could be easily adapted for new
security issues by designing new prompt experts and adding
them into the prompt router. Besides, the existing security
issues supported by iCodeReviewer are general issues with
CWE categories. We do not include any security issues that
are specific to our company in the evaluation.

VII. RELATED WORK
A. LLM-based Code Review

New trends in code review have increasingly focused on
leveraging LLMs, due to their flexibility and context-aware
reasoning capabilities over both natural and programming
languages. Tufano et al. [32] started with a fine-tuned T5
model to generate code review comments, showing that pre-
trained Transformers outperform prior neural and statistical
baselines. Empirical studies [3], [35] evaluate LLMs such as
Codex and ChatGPT in real-world review scenarios. They
found that while LLMs can replicate many aspects of human
review behavior, they may overgeneralize or hallucinate sug-
gestions without project-specific grounding. Then, researchers
also applied agent-based architectures that modularize code
review workflows. For example, CodeAgent [29] orchestrates
specialized sub-agents (e.g., QA-Checker) to emulate collab-
orative review dynamics, outperforming baseline generative
models such as ChatGPT and Codex. Unfortunately, we could
not include this approach as a baseline due to the political mat-
ter. Further studies [1], [9], [27] demonstrated that providing
additional code structure or execution context improves review
accuracy and relevance. Although additional information is
already known to be helpful for code review automation, we
are the first to propose the mixture-of-prompts approach that
routes the prompt experts based on code features.

B. LLM-adapted Vulnerability Detection

Recent studies proposed LLM adaptation techniques for
vulnerability detection. There are three major ways to adapt
LLMs to vulnerability detection: (1) fine-tuning, (2) prompt
engineering, and (3) retrieval augmented generation (RAG).
During fine-tuning LLMs, researchers [16], [18], [30], [34],
[36], [43] have leveraged various program analysis tech-
niques to extract structural features/relations within code,
which can help enhance code understanding. To address the
Transformer [33]’s architectural limitations, i.e., sequential
token relation, researchers [11], [28], [37] tried to apply
deep learning modules such as GNN [23]. There is another
study [46] that considers restrictions on the length of input
code snippets and applies Bi-LSTM [24] to mitigate the lim-
itation. While fine-tuning techniques have shown measurable
improvements in detection performance, the gains are often
modest and come with substantial computational cost and
limited generalizability across diverse codebases.

To further improve the performance, researchers focused on
boosting the LLM’s capabilities by engineering the prompts.
The possible prompt design considerations are on the Task
Descriptions [8], [21], [39], [44], [45], Role Description [8],
[13], [39], [45], Auxiliary Information [13], [42], [45], and
Chain-of-thought [14], [17], [44]. Moreover, researchers [17],
[44] have also studied the capabilities of prompt design using
a few examples of input and ground-truth label pairs. Unlike
these studies, our approach borrows the Mixture-of-Experts
(MoE) concept [12], which routes the input through special-
ized sub-models based on the characteristics of the code, and
proposes the mixture-of-prompts architecture that does not
require model training. This allows LLMs to adaptively focus
on specific potential security issues initially inferred from
the input program, which enhances performance to identify
security issues accurately.

VIII. CONCLUSION

In this paper, we first define secure code review, a more
challenging but practical and helpful code review task de-
sired by the industry. To complete this task, we propose
iCodeReviewer, a LLM-based approach that leverages a novel
mixture-of-prompts architecture to improve both the preci-
sion and coverage of previous code review approaches. We
compare iCodeReviewer with eight baselines in an internal
dataset of the company for an objective evaluation of security
issue identification and localization. We also evaluate the
quality of review comments generated by iCodeReviewer via
manual inspection of senior developers and deployment in
two production lines. Results demonstrate the effectiveness
of iCodeReviewer in security issue identification and local-
ization, and the helpfulness of review comments generated
by iCodeReviewer. iCodeReviewer is now adopted by many
production lines in the company.

REFERENCES

[1] Fannar Steinn Aalsteinsson, Bjorn Borgar Magnisson, Mislav Milicevic,
Adam Nirving Davidsson, and Chih-Hong Cheng. Rethinking code



[2]

[4]
[5]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

review workflows with IIm assistance: An empirical study. arXiv preprint
arXiv:2505.16339, 2025.

Larissa Braz and Alberto Bacchelli. Software security during modern
code review: the developer’s perspective. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE °22, page
810-821. ACM, November 2022.

Umut Cihan, Vahid Haratian, Arda Igdz, Mert Kaan Giil, Omercan De-
vran, Emircan Furkan Bayendur, Baykal Mehmet Ucar, and Eray Tiiziin.
Automated code review in practice. arXiv preprint arXiv:2412.18531,
2024.

DeepSeek-Al et al. Deepseek-rl: Incentivizing reasoning capability in
llms via reinforcement learning, 2025.

Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. A security
perspective on code review: The case of chromium. In 2016 IEEE
16th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 21-30, 2016.

Lishui Fan, Jiakun Liu, Zhongxin Liu, David Lo, Xin Xia, and Shanping
Li. Exploring the Capabilities of LLMs for Code Change Related Tasks.
ACM Transactions on Software Engineering and Methodology, page
3709358, December 2024.

Flawfinder. Flawfinder, 2024. https://dwheeler.com/flawfinder/.
Michael Fu, Chakkrit Kla Tantithamthavorn, Van Nguyen, and Trung
Le. Chatgpt for vulnerability detection, classification, and repair: How
far are we? In 2023 30th Asia-Pacific Software Engineering Conference
(APSEC), pages 632-636. IEEE, 2023.

Md Asif Haider, Ayesha Binte Mostofa, Sk Sabit Bin Mosaddek,
Anindya Igbal, and Toufique Ahmed. Prompting and fine-tuning large
language models for automated code review comment generation. arXiv
preprint arXiv:2411.10129, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing
Qin, and Ting Liu. A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions. ACM Transactions
on Information Systems, 43(2):1-55, January 2025.

Zhonghao Jiang, Weifeng Sun, Xiaoyan Gu, Jiaxin Wu, Tao Wen, Haibo
Hu, and Meng Yan. Dfept: data flow embedding for enhancing pre-
trained model based vulnerability detection. In Proceedings of the 15th
Asia-Pacific Symposium on Internetware, pages 95-104, 2024.
Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts
and the em algorithm. Neural computation, 6(2):181-214, 1994.
Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev
Alur, and Mayur Naik. Understanding the effectiveness of large language
models in detecting security vulnerabilities. In 2025 IEEE Conference
on Software Testing, Verification and Validation (ICST), pages 103—-114.
IEEE, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. Large language models are zero-shot reasoners.
Advances in neural information processing systems, 35:22199-22213,
2022.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks,
Deep Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and
Neel Sundaresan. Automating code review activities by large-scale
pre-training. In Abhik Roychoudhury, Cristian Cadar, and Miryung
Kim, editors, Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022, pages 1035-1047. ACM, 2022.

Zhongxin Liu, Zhijie Tang, Junwei Zhang, Xin Xia, and Xiaohu
Yang. Pre-training by predicting program dependencies for vulnerability
analysis tasks. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1-13, 2024.

Chao Ni, Liyu Shen, Xiaodan Xu, Xin Yin, and Shaohua Wang.
Learning-based models for vulnerability detection: An extensive study.
arXiv preprint arXiv:2408.07526, 2024.

Tao Peng, Shixu Chen, Fei Zhu, Junwei Tang, Junping Liu, and Xinrong
Hu. Ptlvd: Program slicing and transformer-based line-level vulnerability
detection system. In 2023 IEEE 23rd International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 162-173.
IEEE, 2023.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang,
and Michael R. Lyu. Static inference meets deep learning: A hybrid type
inference approach for python. In 44th IEEE/ACM 44th International

[20]

[21]

[22]

[23]

[24]

[25]
[26]
(27

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pages 2019-2030. ACM, 2022.

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun Gao, and
Michael R. Lyu. Generative type inference for python. In 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2023, Luxembourg, September 11-15, 2023, pages 988-999.
IEEE, 2023.

Moumita Das Purba, Arpita Ghosh, Benjamin J Radford, and Bill Chu.
Software vulnerability detection using large language models. In 2023
IEEE 34th International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 112-119. IEEE, 2023.

Qwen. Qwen2.5 technical report, 2025.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. [EEE
transactions on neural networks, 20(1):61-80, 2008.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. [EEE transactions on Signal Processing, 45(11):2673-2681,
1997.

Tree Sitter. Tree sitter, 2025. https:/tree-sitter.github.io/tree-sitter/.
CppCheck Solutions. Cppcheck, 2024. https://cppcheck.sourceforge.io/.
Tao Sun, Jian Xu, Yuanpeng Li, Zhao Yan, Ge Zhang, Lintao Xie,
Lu Geng, Zheng Wang, Yueyan Chen, Qin Lin, et al. Bitsai-cr: Auto-
mated code review via llm in practice. arXiv preprint arXiv:2501.15134,
2025.

Wei Tang, Mingwei Tang, Minchao Ban, Ziguo Zhao, and Mingjun
Feng. Csgvd: A deep learning approach combining sequence and graph
embedding for source code vulnerability detection. Journal of Systems
and Software, 199:111623, 2023.

Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li,
Saad Ezzini, Haoye Tian, Jacques Klein, and Tegawendé F Bissyandé.
Codeagent: Autonomous communicative agents for code review. arXiv
preprint arXiv:2402.02172, 2024.

Hoai-Chau Tran, Anh-Duy Tran, and Kim-Hung Le. Detectvul: A
statement-level code vulnerability detection for python. Future Gen-
eration Computer Systems, 163:107504, 2025.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella,
Denys Poshyvanyk, and Gabriele Bavota. Using pre-trained models to
boost code review automation. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022, pages 2291-2302. ACM, 2022.

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella,
Denys Poshyvanyk, and Gabriele Bavota. Using pre-trained models to
boost code review automation. In Proceedings of the 44th international
conference on software engineering, pages 2291-2302, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Fukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie Wang, Yuzhe Liu,
Hejun Fang, Chunwei Xia, and Zheng Wang. Combining structured
static code information and dynamic symbolic traces for software vulner-
ability prediction. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1-13, 2024.

Miku Watanabe, Yutaro Kashiwa, Bin Lin, Toshiki Hirao, Ken’Ichi
Yamaguchi, and Hajimu Iida. On the use of chatgpt for code review:
Do developers like reviews by chatgpt? In Proceedings of the 28th
International Conference on Evaluation and Assessment in Software
Engineering, pages 375-380, 2024.

Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Ligian Chen. Matsvd:
Boosting statement-level vulnerability detection via dependency-based
attention. In Proceedings of the 15th Asia-Pacific Symposium on
Internetware, pages 115-124, 2024.

Aidan ZH Yang, Haoye Tian, He Ye, Ruben Martins, and Claire Le
Goues. Security vulnerability detection with multitask self-instructed
fine-tuning of large language models. arXiv preprint arXiv:2406.05892,
2024.

Zezhou Yang, Cuiyun Gao, Zhaogiang Guo, Zhenhao Li, Kui Liu, Xin
Xia, and Yuming Zhou. A survey on modern code review: Progresses,
challenges and opportunities. CoRR, abs/2405.18216, 2024.

Xin Yin. Pros and cons! evaluating chatgpt on software vulnerability.
arXiv preprint arXiv:2404.03994, 2024.

Jiaxin Yu, Liming Fu, Peng Liang, Amjed Tahir, and Mojtaba Shahin.
Security defect detection via code review: A study of the openstack and
qt communities. In ACM/IEEE International Symposium on Empirical



[41]

[42]

[43]

[44]

[45]

[46]

[47]

Software Engineering and Measurement, ESEM 2023, New Orleans, LA,
USA, October 26-27, 2023, pages 1-12. IEEE, 2023.

Jiaxin Yu, Peng Liang, Yujia Fu, Amjed Tahir, Mojtaba Shahin, Chong
Wang, and Yangxiao Cai. An insight into security code review with
Ilms: Capabilities, obstacles and influential factors, 2024.

Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang, Yuhong Li, and
Hui Li. Prompt-enhanced software vulnerability detection using chatgpt.
In Proceedings of the 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings, pages 276-277, 2024.
Junwei Zhang, Zhongxin Liu, Xing Hu, Xin Xia, and Shanping Li.
Vulnerability detection by learning from syntax-based execution paths
of code. IEEE Transactions on Software Engineering, 49(8):4196-4212,
2023.

Xin Zhou, Duc-Manh Tran, Thanh Le-Cong, Ting Zhang, Ivana Clairine
Irsan, Joshua Sumarlin, Bach Le, and David Lo. Comparison of static
application security testing tools and large language models for repo-
level vulnerability detection. arXiv preprint arXiv:2407.16235, 2024.
Xin Zhou, Ting Zhang, and David Lo. Large language model for
vulnerability detection: Emerging results and future directions. In
Proceedings of the 2024 ACM/IEEE 44th International Conference on
Software Engineering: New Ideas and Emerging Results, pages 47-51,
2024.

Noah Ziems and Shaoen Wu. Security vulnerability detection using
deep learning natural language processing. In IEEE INFOCOM 2021-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 1-6. IEEE, 2021.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin.
Vuldeepecker: A deep learning-based system for multiclass vulnerability
detection. IEEE Transactions on Dependable and Secure Computing,
page 1-1, 2019.



	Introduction
	Background
	Problem Definition
	Motivating Example to Reduce False Positives

	Methodology
	Overview
	Phase I: Feature Extraction
	Phase II: Prompt Expert Routing
	Phase III: Issue Identification
	Phase IV: Review Generation

	Experiment Setup
	Research Questions
	Datasets
	Metrics
	Baselines
	Implementation

	Evaluation
	Effectiveness of iCodeReviewer in Security Issue Identification and Localization
	Helpfulness of Reviews Generated by iCodeReviewer
	Ablation Study

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	LLM-based Code Review
	LLM-adapted Vulnerability Detection

	Conclusion
	References

