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Code generation has largely improved development efficiency in the era of large language models (LLMs).
With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed
descriptions in natural language. Many research efforts are being devoted to improving the correctness of
LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite
the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current
correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well
distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is
not stable and comprehensive, threatening the validity of the time efficiency evaluation.

To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a
code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE
contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve
the distinguishability, we design a novel stressful test case generation approach with contracts and two new
formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose
efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different
solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw
some implications for LLM researchers and software practitioners to facilitate future research and usage of
LLMs in code generation.
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1 Introduction
Nowadays, large language models (LLMs) such as GPT-4 [62] and Llama3.1 [55] have demonstrated
great ability to solve different software engineering tasks. With the ability to follow instructions [12,
56, 65, 83], LLMs can act like human developers, promptly handle the instructions and generate
completed code, reviews, or comments. Code generation, which is tasked with converting natural
language instructions into executable code, has the potential to significantly enhance the efficiency
of software development. It is thus a critical software engineering problem being studied by
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many researchers. Researchers have proposed different approaches to make use of LLMs on code
generation via prompting engineering [10, 58, 70, 74, 94], multiple-agent cooperation [29, 30, 32,
80, 87, 92], and retrieval augmentation [50, 67, 77, 90, 95].
To facilitate the evaluation of code generation, many benchmarks such as HumanEval [8],

MBPP [5], CodeContests [43], and APPS [28] are proposed to evaluate the correctness of generated
code solutions, and we refer them as correctness benchmarks. These benchmarks include coding
tasks drafted by experienced developers [5, 8] or collected from coding competitions [28, 43], with
several test cases for each problem to examine the correctness of LLM-generated code solutions.
With the correctness benchmarks, researchers can thoroughly study and further improve the ability
of LLMs to generate correct code. Built upon current advanced techniques, powerful LLMs such as
GPT-4 have obtained remarkable performance with the Pass@1 of 86.6% on the function-level code
generation benchmark HumanEval [8], reported by the EvalPlus leaderboard [47].
However, correctness benchmarks alone are insufficient to comprehensively evaluate LLMs’

ability of code generation, especially when these models are increasingly used to generate code
solutions for software products [88]. In real-world software development, both correctness and
time efficiency are crucial for ensuring software quality. Correct but time-inefficient code can lead
to a lot of CWE issues [13]. Recent work [44, 48, 69, 75] on LLM-based code generation steps further
to generate correct and efficient code. They directly adopt existing correctness benchmarks and
measure the execution time of LLM-generated code solutions to determine the time efficiency. We
argue that current correctness benchmarks are not suitable for time efficiency evaluation for the
following challenges:

• Challenge 1: Existing correctness test cases cannot well distinguish the time efficiency

of different code solutions. Test cases in correctness benchmarks usually have small inputs since
they aim to cover most corner cases to detect potential logical errors in code solutions. However,
such test cases can hardly distinguish the time efficiency of different code solutions since code with
different time complexities may cost similar time under small inputs. Therefore, it is necessary to
include test cases with larger inputs so that we can better distinguish code solutions with different
time efficiency. We refer to such test cases as stressful test cases. Stressful test case generation is not
straightforward and cannot be easily handled by current correctness test case generation methods.
Stressful test cases usually consume much more execution time, so traditional execution-based test
case generation methods with many iterations of complete executions are too time-consuming to
be adopted. LLM-based test case generation methods without execution can generate stressful test
cases quickly, but they are limited by context windows and can hardly maintain the long inputs in
results, threatening the accuracy of stressful test case generation.
• Challenge 2: Execution time metric is unstable and not comprehensive for time effi-

ciency evaluation. Unlike correctness evaluation, which can be easily repeated on any computer
machine, execution time measurements highly rely on the machine where the experiments are
conducted. Shypula et al. [75] find that two single time measurements of the code solution on the
same environment can differ as much as 1.91×. Unstable execution time measurements threaten
the validity of time efficiency evaluation. Besides, previous work [33, 75] regards time efficiency
evaluation as independent of correctness evaluation for code generation, but time efficiency eval-
uation is conducted upon correctly generated code solutions. Using separate metrics to evaluate
the correctness and time efficiency makes it hard to distinguish the quality of code solutions
with high correctness but low time efficiency and those with high time efficiency but low correct-
ness. Currently, there is no single metric evaluating both the correctness and time efficiency of
LLM-generated code solutions.
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To address the two challenges above in evaluating the time efficiency of LLM-generated code
solutions, we 1) propose a new time efficiency benchmark namedCOFFE, along with a novel

approach STGen to generate stressful test cases automatically. Specifically, COFFE is built
upon existing correctness benchmarks HumanEval [8], MBPP [5] for function-level code generation
and CodeContests [43], and APPS [28] for file-level code generation by adding stressful test cases
generated by STGen. Hence, it contains two splits for function-level and file-level code generation.
STGen implements three phases to improve the accuracy of stressful test case generation. In the
first phase, STGen generates contracts that record the dependencies between inputs, and contracts
are then used to guide the test case generation in the second phase. An LLM judge checks conflicts
between generated contracts and test cases and rejects incorrect test cases in the third phase. By
validating test cases on contracts, STGen can identify incorrect test cases early and provide feedback
for LLMs to help fix them. STGen also uses expressions and generator functions to replace the raw
inputs in the stressful test cases to avoid overlong test cases that hinder the generation of LLMs.
Furthermore, we 2) propose a newmetric named efficient@k that considers both correctness

and time efficiency based on CPU instruction count measurements.. Efficient@k follows
the same logic as pass@k [8], and the difference is that it requires a code solution to be correct
and faster than the best ground truth solution to contribute. When comparing code solutions and
ground truth solutions, we replace execution time with a more stable measurement CPU instruction
count to conduct a solid comparison.
Experiments demonstrate that STGen is quite effective in stressful test case generation by

correctly generating approximately 99% of test cases with a 96% line coverage. Furthermore, To
evaluate the effectiveness of stressful test cases generated by STGen, the stressful test cases
generated by STGen can much better distinguish the time efficiency of code solutions by achieving
the relative standard deviation (RSD) of 27.26% and 17.60% over different function-level and file-level
code solutions generated by Llama3.1 [55], largely improving the RSD of 19.05% and 15.73% on the
original correctness test cases. This indicates the high quality of COFFE. To verify the stability of
CPU instruction count, we compare it with execution time and find that CPU instruction count
has a RSD of 0.003%∼0.005%, which is 1,000× smaller than that of execution time measurement
(2.37%∼5.65%). This provides a solid basis for the calculation of efficient@k.

Based on COFFE, we evaluate the time efficiency of code solutions generated by ten open-source
LLMs and four closed-source LLMs and identify the following important findings:

• The performance of current LLMs drops significantly in efficient code generation, indicating
that the code solutions generated by current LLMs are correct but not time-efficient.

• Compared with function-level code generation, code solutions generated by current LLMs
are less efficient in file-level code generation.

• Larger LLMs generally perform better in correct code generation but do not significantly
outperform smaller LLMs in efficient code generation, indicating larger parameter sizes of
current LLMs do not contribute much to efficient code generation.

We summarize the contributions of this paper as follows:

• We build COFFE, a benchmark for evaluating the time efficiency of both function-level and
file-level code solutions generated by LLMs.

• We propose STGen, the first LLM-based stressful test case generation approach that employs
contract validation and test cases with expression and generator functions inputs to improve
accuracy.

• We introduce a novel metric efficient@k, based on stable CPU instruction count measurement,
to evaluate the correctness and time efficiency of the LLM-generated code solutions.
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Code Solution:

import sys
inp = sys.stdin.readline
def solve():
    n = int(inp())
    a = [[0] for i in range(n)]
    mb = [0] * (1 << n)
    for i in range(n):
        s = inp().strip()
    ...
if __name__ == '__main__':
    solve()

Code Solution:

def add(lst):
    return sum( 

         (lst[i] 
             for i in range(1, len(lst), 2) 

                     if lst[i] % 2 == 0
  ) 

      )

(a) Function-level Code Generation (b) File-level Code Generation

Test Case:

Input: [4, 4, 6, 8]
Output: 12

Test Case:

Input: "4\n()()())\n(\n(\n)\n"
Output: "4\n"

Fig. 1. Examples for function-level and file-level code generation.

• We conduct extensive experiments to evaluate the quality of COFFE, the effectiveness of
STGen, and the ability of current LLMs to generate efficient code.

2 Problem Definition
Currently, there are three types of code generation tasks: function-level, file-level, and repo-level
code generation. We mainly focus on the first two types of code generation since repo-level code
generation involves different modules in the repositories and third-party dependencies, making
it hard to obtain solid time efficiency measurements. To better illustrate the differences between
function-level and file-level code generation, we present two examples in Figure 1.
Function-level Code Generation. Function-level code generation takes natural language

functionality descriptions as input and generates a single function that satisfies the requirements.
The generated function accepts inputs through function parameters. The HumanEval [8] and
MBPP [5] benchmarks are designed to benchmark function-level code generation.

Figure 1(a) shows an example function. We observe that the function add() only has a parameter
named lst, and we only need to generate test inputs for this parameter to build a test case. This
shows that the number of parameters in functions is determined and functions accept inputs
only once from parameters before the function execution. Therefore, to generate test cases

for function-level code generation, we can generate test inputs for each parameter and

combine them as a test case.

File-level Code Generation. File-level code generation generates a complete program file
instead of a single function to satisfy specified requirements. The inputs of the program file
are managed by standard input (stdin) related APIs, e.g., input(). File-level code generation tasks
frequently appear in coding competitions, based on which researchers built Code Contests [43]
and APPS [28] benchmarks.
Figure 1(b) shows an example program file. We observe that this code solution accepts inputs

in two locations (highlighted in blue). The input in the first location is used to control how many
times the input in the second location will take. This indicates that the number of inputs for

program files is not only determined by the code solution but also by the inputs. This
poses great challenges in generating test cases for file-level code generation.

3 Methodology
This section describes howwe build the benchmark COFFE, including selecting the coding problems,
proposing STGen to generate stressful test cases for function-level and file-level code generation,
and designing a novel time efficiency metric efficient@k.
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Table 1. The statistics of four sanitized benchmarks we selected to build COFFE. “Ori.”, “Val.” and “Sel.”

indicate the original problems, validated problems, and finally selected problems in the benchmarks. The

other columns in the table represent the data for the finally selected problems.

Benchmark

#Problem

#Solution/Problem #Test Case/Problem Level

Ori. Val. Sel.

HumanEval 164 164 164 1.00 9.57 Function
MBPP 234 234 234 1.00 3.02 Function

Code Contests 111 106 58 80.26 197.53 File
APPS 5,000 3,106 300 64.36 13.94 File

3.1 Data Preparation
To construct COFFE, we collect problems in the test splits of two existing function-level correctness
benchmarks (i.e., HumanEval [8] and MBPP [5]), and two existing file-level correctness benchmarks
(i.e., APPS [28] and CodeContests [43]). Each benchmark contains multiple coding problems and
provides each problem with a description that explains the requirements in natural language,
several ground truth solutions that address the problem, and several test cases that evaluate the
correctness of generated code solutions. As there are multiple versions for MBPP, we choose the
common subset of the sanitized version [24] and the MBPP+ benchmark verified by EvalPlus [46]
as our base benchmark to ensure the highest quality.

With the selected benchmarks, we first validate the problems by checking the potential conflicts
of provided test cases and ground truth solutions. Secondly, we select problems that most LLMs
could correctly answer to reduce the difficulty of problems for the two file-level benchmarks since
a problem is not useful in time efficiency evaluation if no LLM can answer it. We show the statistics
of four benchmarks in Table 1.

3.1.1 Problem Validation. To ensure the quality of test cases and ground truth solutions in the four
benchmarks, we run the ground truth solutions in the provided test cases and remove 1) ground
truth solutions that cannot pass the provided test cases to ensure consistency, 2) ground truth
solutions with file operations to keep safety, and 3) problems without valid ground truth solutions
and test cases. We show the number of validated problems in each benchmark in the third column
of Table 1. All problems in HumanEval and MBPP can be successfully validated, so no problem is
removed. For the Code Contests benchmark, we identify five problems with file operations, and
we remove them to guarantee the safety of testing environments. For the APPS benchmark, we
identify 1,894 problems whose ground truth solutions conflict with the provided test cases. The
reason for such conflicts is that the APPS benchmark does not require the output of a code solution
to exactly match the expected outputs in test cases to be correct, which differs from the other three
benchmarks. We remove the 1,894 problems without exact matches in the APPS benchmark to
maintain consistent evaluation standards.

3.1.2 Problem Selection. Current LLMs are quite effective in function-level code generation by
achieving a pass@1 of more than 80% in the HumanEval benchmark, as discussed in Sec. 1. However,
they performmuch worse in file-level code generation since the most powerful LLM has a Pass@1 of
28.5% on the Code Contests benchmark and a Pass@1 of less than 10% on the APPS benchmark [85,
86]. This limits the usage of the full set of the Code Contests and APPS benchmarks because a
problem that no LLM can correctly answer does not contribute to the time efficiency evaluation.
Therefore, for the validated problems in the two benchmarks, we sample one code solution with
temperature 0 on 14 LLMs used in our experiments described in Table 3 and remove 48 and 2,223
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Import sys
Inp = sys.stdin.readline
def solve():
      n = int(inp()) 
      ...

Target Program

Contract Checker

Verified Test Cases

assert  1 <= n <= 20
assert  len( j) == n – k
...

Contracts

assert  1 <= n <= 20
assert  len( j) == n – k
...

Contracts

assert  1 <= n < 10**4
assert  len( j) == n – k
...

Contracts

Correctness 
Test Cases

Verified Contracts

LLM

Test Case Generator

LLM

Contracts Generator

LLM

Plausibility Check

Execution

Demonstration

Pass

AssertionError

Test Case
Type: Generator

def generate_input()
      ...

Test Case
Type: Raw
[[10, -10, 10], [-10, 10, -10], 
[5, -5...

Test Case
Type: Expression
[i**3 - 3*i**2 + 2*i for i in 
range(...

Test Case Validation

Execution

Pass

Wrong Test Case

Wrong Contract

Phase I: Contract Generation

Phase II: Stressful Test Case Generation

Phase III: Test Case-
Contract Validation

Demonstration

Fig. 2. The overview workflow of STGen.

problems that code solutions from all LLMs failed in the Code Contests and APPS benchmark,
respectively. To balance the number of problems in the function-level split and file-level split of
COFFE, we further select 300 problems in the APPS benchmark for which more LLMs can generate
correct code solutions. We show the number of selected problems from the four benchmarks and
associated statistics in the 4∼6 columns of Table 1.

3.2 Stressful Test Case Generation: STGen
With the selected problems, we propose a novel LLM-based approach STGen to generate stressful
test cases automatically. In contrast to current LLM-based test case generation methods [7, 41, 45,
66, 72, 73], STGen aims to generate test cases to evaluate the time efficiency of code solutions
under extreme conditions rigorously. This inherently requires constructing exceptionally long and
intricate inputs that can hardly be handled by LLMs directly, leading to unsatisfactory accuracy,
i.e., the proportion of correctly generated stressful test cases is low.

3.2.1 Overview. To improve the accuracy of stressful test case generation, STGen introduces
contracts to guide the test case generation and validate the generated test cases. Contracts are
collections of assertion statements that record the type, scale, and internal constraints between
the inputs. Providing contracts in the test case generation process can help LLMs understand the
dependencies between test inputs. Besides, STGen can easily identify incorrect test cases from the
assertion errors contracts raise. To avoid overlong stressful test cases that hinder the performance
of LLMs, we design two new formats of test cases by reformulating the test case generation task
into a code generation task: expression test cases and generator test cases. Different from raw test
cases that directly provide test inputs, expression and generator test cases contain code to generate
test inputs, which greatly shortens the length of test cases.

We present the overview of STGen in Figure 2. STGen does not directly generate stressful test
cases. Instead, it decomposes the task into three phases: 1) contract generation, 2) stressful test
case generation, and 3) test case-contract pair check. In the first phase, STGen generates contracts
by analyzing the target program, i.e., the ground truth solution for each problem in the benchmark.
The generated contracts are then provided as demonstrations for stressful test case generation in
the second phase, in which STGen generates expression and generator test cases instead of raw
test cases. Since contracts are also generated and there is no guarantee of their correctness, STGen
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enters the third phase if the number of AssertionError occurrences for a certain contract exceeds a
threshold. In the third phase, STGen implements an LLM judge to determine the responsibility for
conflicts between generated contracts and test cases. The contracts or test cases that are judged
to be incorrect will be sent back for regeneration. This iterative process allows the generation of
contracts and stressful test cases to mutually reinforce each other.

3.2.2 Phase I: Contract Generation. In the first phase, STGen inserts assertion statements that
check the preconditions of inputs as contracts into the target program, such as assert n > 0. The
contracts ensure that the inputs meet the required specifications in format (e.g., variable type), scale
(e.g., input length, order of magnitude), and intrinsic constraints (e.g., right triangle side lengths).

The benefits of inserting contracts before stressful test case generation are twofold: 1) Knowl-

edge Enrichment. Contracts explicitly indicate the functionality of the target program and the
dependencies between inputs, which can help LLM better understand natural language descriptions
provided in problems [20, 45]; 2) Early Validation. Contracts can identify invalid inputs in test
cases at the beginning of program execution and stop the execution-based test case validation
process early, which largely improves the efficiency of the test case generation process.
In contract generation, STGen generates one assertion statement in an iteration and combines

all assertion statements into a contract. When generating assertion statements, STGen prompts
LLMs to consider the type, scale, and intrinsic constraints between inputs given the target program,
existing correctness test cases, and previously generated assertion statements as demonstrations.
STGen implements the same methodology to generate assertion statements for function-level
and file-level target programs. However, STGen employs different strategies to insert assertion
statements into target programs, given the differences between the code solutions in function-level
and file-level code generation illustrated in Sec. 2.
Function-level Contract Insertion. For function-level target programs with a determined

number of inputs, STGen generates and inserts assertion statements for function parameters at the
beginning of the function body. For example, STGen inserts assertion statements right before the
return statements in the function add() in Figure 1(a).
File-level Contract Insertion. For file-level target programs with an unknown number of

inputs and multiple input locations, STGen reformulates the contract generation problem into
a code editing problem. It first identifies all input locations by checking the related system APIs
such as input() and then inserts assertion statements for each identified input location sequentially.
STGen inserts assertion statements right after the input locations in most cases. However, as input
locations in loops generally assign values for generic types such as list and dict, STGen inserts
assertion statements after the entire loop where the assignments are complete to check the fully
assigned types. For example, STGen identifies two input locations highlighted in blue in Figure 1(b).
STGen first generates assertion statements for the input that assigns values to variable 𝑛 and inserts
them right after the assignment. STGen then generates assertion statements for the second input
in the loop, and this time, it inserts assertion statements after the entire for loop.

To improve the correctness of generated assertion statements, STGen tests all generated assertion
statements against the correctness test cases each time it inserts a new assertion statement. If
the current assertion statement fails on the test cases, STGen only removes the current assertion
statement and regenerates a new onewhile maintaining the assertion statements correctly generated
in previous iterations. The iteration ends until no new assertion statements are generated or a
maximum iteration number is reached.

3.2.3 Phase II: Stressful Test Case Generation. With the generated contracts as demonstrations, in
the second phase, STGen generates stressful test cases. Unlike correctness test case generation, it is
quite challenging to generate stressful test cases because LLMs must generate test cases of maximal
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length and complexity within the constraints of its finite context window while simultaneously
ensuring adherence to intrinsic input constraints specified by contracts. Correctness test cases in
current benchmarks [5, 8, 28, 43] are raw test cases that directly provide the values for test inputs.
However, due to the limited context window size, it is infeasible to directly generate overlong raw
test cases for time efficiency evaluation. For example, it is hard for LLMs to generate a list with
more than a million numbers for stressful tests. To address this challenge, we introduce two new
formats of stressful test cases:

Expression Test Cases. Expression test cases utilize Python expressions to generate test cases,
allowing for more complex input generation while maintaining a compact representation within
the LLM’s context window. For instance, a list with a million numbers could be easily generated by
an expression “[random.randint(1, 100000) for _ in range(1000000)]”, which is much shorter than
listing a million numbers. Expression test cases offer a balance between complexity and conciseness,
enabling the creation of structured inputs. They are suitable for function-level test case generation
with a determined number of test inputs. To evaluate code solutions on expression test cases, we
just need to execute the expressions to get the real test inputs before the code execution.

Generator Test Cases. Generator test cases are Python functions that output the test inputs. It
is quite useful for creating stressful test cases that require intricate logical relationships or patterns
that are difficult to express in single expressions. For example, it is suitable for file-level code
generation where the number of inputs is undetermined. Expression test cases cannot handle this
since we do not know how many expressions should be generated.

To generate expression and generator test cases, STGen prompts the LLMs with contract, verified
generated test cases as demonstrations, so LLMs can learn the dependencies between inputs as well
as the specific formats of the expected test cases. The generated test cases are then verified against
the previously generated contracts and the target program. Test cases that pass the validation of
contracts and the execution of the target program are collected to build COFFE. Verified stressful
test cases are also used as demonstrations to help generate the following stressful test cases.

3.2.4 Phase III: Test Case-Contract Pair Check. Although the generated contracts are verified
against the existing correctness test cases, correctness test cases do not cover all possible cases and
dependencies among inputs, especially in stressful scenarios. Contracts can still make mistakes and
induce false positives. During the test case validation, if a generated test case violates the inserted
contract, it triggers an AssertionError. If the AssertionError consistently occurs for multiple test
cases, the contract may be incorrect and thereby hinder the entire stressful test case generation
procedure. To mitigate this, when the number of conflicts between contracts and test cases (i.e.,
AssertionError occurrences during execution) exceeds a predefined threshold (5 in this paper), the
generated test case and the violated contract are paired for further check by an LLM judge checker
in the third phase.
The LLM judge takes all accumulated contract-related execution failure pairs as inputs, along

with the target program, to analyze and determine the validity of the contracts and the test cases.
The judge reviews the violated contract with exact stressful inputs, rethinks the correctness of the
generated contract, and determines the root cause of conflicts. Once the root cause is identified,
the relevant judgment results and corresponding failure pairs are sent back to the previous phases
for regeneration. By providing feedback for incorrect contracts or test cases, STGen enhances the
robustness of the test case validation and enables the improvements between contract generation
and test case generation. To prevent duplicate judgments, once the LLM judge determines that a
contract is valid in the third phase, it will not be checked again, and test cases that fail the validation
of this contract will be directly rejected in the future.
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3.3 Time Efficiency Metric: Efficient@k
Previous work [33, 75] intuitively adopts execution time as the performance measurement to
evaluate the time efficiency of LLM-generated code. However, execution time measurements could
be affected by many factors, such as process scheduling and disk I/O, so it is not stable enough to
make a solid comparison between the time efficiency of different code solutions. In this section, we
propose to use CPU instruction count to replace execution time to measure the time efficiency of
code solutions stably. Based on CPU instruction count measurements, we propose a new metric
efficient@k to evaluate both the correctness and time efficiency of code solutions.

3.3.1 CPU Instruction Count. To find a more stable measurement to replace execution time, we
first look into the factors contributing to the execution time. Patterson and Hennessy [68] define
the CPU time cost by a program through the following equation.

CPU Time = [Instruction Count] × [Clock per Instruction] × [Clock Cycle Time] (1)

From the equation, the CPU time of a program is determined by three factors. While Clock per
Instruction and Clock Cycle Time depend on the physical machine where the program runs, the
only factor related to the program is Instruction Count. Therefore, if a program has a higher CPU
instruction count on the same machine, it is less efficient, and vice versa. Unlike the execution time
measurements that could be affected by many factors, CPU instruction count measurements are
more stable as CPU instruction count for a program does not increase even if the program execution
is slowed or stalled by external factors. It is also straightforward to measure CPU instruction count
using the system APIs. For example, Linux provides a command tool named perf [21] to support
CPU instruction count measurements.

3.3.2 Efficient@k. CPU instruction count is a stable measurement for the time efficiency evaluation
of different code solutions. However, its absolute value is not meaningful as the same code solution
has different CPU instruction counts in different machines. Besides, it is not comprehensive as
it does not measure the correctness of generated code solutions. To address these problems, we
propose a newmetric named Efficient@k, inspired by the design of pass@k [8]. We show the original
definition of pass@k in Equation 2 and the definition of proposed efficient@k in Equation 3.

pass@k := E
Problems

[
1 −

(
𝑛−𝑐
𝑘

)(
𝑛
𝑘

) ]
(2)

efficient@k := E
Problems

[
1 −

(𝑛−𝑐 𝑓
𝑘

)(
𝑛
𝑘

) ]
(3)

Pass@k is an expectation over all problems in the benchmark for the probability that at least
one solution in 𝑘 samples can pass all test cases. In equation 2, total 𝑛 solutions are sampled from
LLMs instead of only 𝑘 samples to reduce the variance. By running the sampled code solutions
on correctness test cases, we can get the solutions 𝑐 that can pass all the test cases to estimate the
probability of correctness. Pass@k is a solid metric with low variance and can be easily reproduced
under different platforms.
We follow the idea of pass@k when designing efficient@k. Pass@k requires the correct code

solutions 𝑐 to contribute, while in efficient@k, we collect the number 𝑐 𝑓 of the correct solutions
faster than the best ground truth solution to replace 𝑐 in pass@k. Therefore, efficient@k evaluates
the probability of LLMs to generate correct and fast enough code solutions. Efficient@k compares
the CPU instruction count of code solutions and ground truth solutions to determine which runs
faster. By doing so, efficient@k does not consider the absolute values of CPU instruction counts to
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Table 2. The statistics of COFFE.

Category #Problem #Solution/Problem

#Test Case/Problem

Correctness Stressful

Function-level 398 1.00 5.72 4.99
File-level 358 66.93 43.68 4.95

avoid the impacts of specific systems or machines. With a value range from 0 to pass@k, efficient@k
combines correctness and time efficiency evaluation to comprehensively evaluate the quality of
code solutions.

3.4 Code Efficiency Benchmark: COFFE
With the stressful test case generation approach STGen, we add stressful test cases for each problem
selected in Sec. 3.1. Specifically, we generate 20 stressful test cases for each problem and measure the
CPU instruction count each test case costs. We conduct the measurements 12 times and remove the
highest and lowest measurements before calculating the average to ensure the most stable results.
In the CPU instruction measurements, we limit the execution time of one single measurement to
five seconds so that the measurements for one test case will not exceed one minute. We then rank
the average CPU instruction count of each test case and include the five test cases with the highest
CPU instruction counts in COFFE. We do not include all generated stressful test cases in COFFE to
avoid large time costs in time efficiency evaluation, since stressful test cases generally take much
longer time than correctness test cases to execute. We reserve all existing correctness in COFFE to
validate the correctness of generated code solutions. We show the statistics of COFFE in Table 2.

4 Experiment Setup
4.1 ResearchQuestions
We focus on the following research questions:

• RQ1:Howwell does CPU instruction count measure time efficiency compared with execution
time?

• RQ2:How effective is STGen on stressful test case generation and how well are the generated
stressful test cases?

• RQ3: How efficient is the code generated by current LLMs?

4.2 Metrics
To evaluate the stability of CPU instruction count (RQ1), we introduce the following metrics:

• Relative Standard Deviation (RSD): The ratio of the standard deviation to the mean. We
use it to measure how stable a performance metric is on the same code solution (the lower,
the better) and how well a test case can distinguish different code solutions (the higher, the
better). We use “RSD (-)” when it is used to evaluate stability and “RSD (+)” when it is used to
evaluate distinguishability.

• Pearson Correlation Coefficient: The ratio between the covariance of two variables and
the product of their standard deviations. We use it to measure the linear correlation between
two metrics.

To evaluate the quality of stressful test cases and the effectiveness of STGen (RQ2), we introduce
the following metrics:
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• Accuracy: The proportion of test cases generated by a certain method where the target
program does not fail.

• Line Coverage: The percentage of executed lines in solutions when executing the test cases.

To evaluate the efficiency of code solutions generated by LLMs (RQ3), we use the following
metrics:

• Pass@k: The probability that at least one of the top k-generated code samples for a problem
passes the unit tests, as illustrated in Sec. 3.3.

• Speedup: The ratio 𝑔𝑡

𝑜
of CPU instruction count of best ground truth solution 𝑔𝑡 to the CPU

instruction count of a code solution 𝑜 .
• Efficient@k: The probability that at least one of the top k-generated code samples for a
problem is correct and more efficient than the best ground truth solution, as introduced in
Sec. 3.3.

4.3 Baselines
Since there is no previous work on LLM-based stressful test case generation, we select three widely
used LLM-based correctness test case generation methods and adapt them into stressful test case
generation:

• Instruction Prompting [79].Wang et al. design several instruction prompt templates to
ask LLMs to cover certain lines, branches, or paths of the code in test case generation. We
modified their instruction prompt and let LLMs focus on stressful test case generation. This
method generates raw test cases.

• Few-shot Prompting [66]. Few-shot prompting adds several demonstrations to guide LLMs
to generate similar test cases. This method generates raw test cases.

• Generator-based Prompting [49]. Instead of directly generating test cases, this method
prompts LLMs to generate a function that derives the test cases. We adapt this method to
our stressful test case generation and let LLMs generate functions that produce stressful test
cases. This method generates generator test cases.

4.4 Models
To investigate the efficiency of code generated by current LLMs, we select 14 popular models for
evaluation. We show the model names, sizes, and context lengths in Table 3. For GPT-3.5 [61]
and GPT-4o [63], we use the APIs provided by OpenAI [64] under engines “gpt-3.5-turbo” and
“gpt-4o”, respectively. For DeepSeek V2 [16] and DeepSeek V2 Coder [96], we use the APIs provided
by DeepSeek [15] under engine “DeepSeek-V2-0628” and “DeepSeek-V2-0724”, respectively. For
Claude 3.5 Sonnect [4], we use the APIs provided by Anthropic [3] under the engine “claude-3-5-
sonnet-20240620”. For Gemini 1.5 Pro, we use the APIs provided by Google [25] under the engine
“gemini-1.5-pro” to generate code solutions. Due to limited computing resources, for open-source
models larger than 13B, we use the API provided by Deep Infra [34] to generate code solutions.

4.5 Implementation Details
We conduct all experiments on a Linux machine with Ubuntu 20.04.4 LTS. It has an Intel(R) Xeon(R)
Platinum 8358P CPU of 2.60G HZ with 128 cores and 2 TB memory. We use the Coverage.py [6]
library to measure the line coverage of test cases, and the Cirron [76] library to measure the CPU
instruction count a program consumes.
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Table 3. The LLMs we evaluate in this paper. Models highlighted in gray are closed-source models.

Model Size Context Size Model Size Context Size

Phi3 [1] 3.8B 128k MagicCoder [84] DS-6.7B/CL-7B 16,384
CodeLlama [71] 7B/13B/34B 16,384 Llama3 [54] 8B/70B 4,096
StarCoder [42] 15B 16,384 WizardCoder [53] 15B 2,048
Mixtral [35] 8×7B 32,768 DeepSeek V2 [16] 236B 128k

DeepSeek Coder V2 [96] 236B 128k Llama3.1 [55] 405B 4,096
Claude 3.5 Sonnet [4] - 200k Gemini 1.5 Pro [14] - 200k

GPT-3.5 [35] - 16,385 GPT-4o [63] - 128k

5 Experiment Results
5.1 RQ1: CPU Instruction Count vs. Execution Time
To demonstrate that CPU instruction count is more suitable for time efficiency evaluation than
execution time, we focus on two aspects: stability, which evaluates how solid the measurement is,
and correlation, which evaluates how close two measurements are.

Stability. To compare the stability of CPU instruction count and execution time measurements,
we run the ground truth solutions of the validated problems on the correctness test cases from the
four correctness benchmarks. Note that we do not run them on our stressful test cases to ensure a
fair comparison since CPU instruction count is involved in building COFFE. We run each solution
12 times and remove the largest and smallest measurements. We then calculate the RSD of the
remaining 10 measurements and show the results in the second and third columns of Table 4.

As the experiments are repeated on the same ground truth solution and same test cases, a lower
relative standard deviation indicates a more stable measurement. From Table 4, we can observe
that execution time has an RSD of about 5% on function-level benchmarks HumanEval and MBPP
and an RSD of about 2% on file-level benchmarks Code Contests and APPS. On the contrary, CPU
instruction count has a more than 1000× smaller RSD (0.003%∼0.005%) than execution time on four
benchmarks. This indicates that the ten measurements of CPU instruction count almost remain the
same on the same program, and CPU instruction count is quite stable in measuring time efficiency.
Correlation. To validate the linear correlation between CPU instruction count and execution

time, as described in Equation 1, we calculate the Pearson correlation coefficient between CPU
instruction count and execution time, as shown in the last column of Table 4. We find that the
correlations of the two measurements on all benchmarks are very close to 1.0. This indicates that
the two measurements are linearly correlated and verifies the correctness of Equation 1 as the
other two factors Clock per Instruction and Clock Cycle Time do not change in the same testing
environment. Therefore, we can replace execution time with CPU instruction count to measure
time efficiency.

Answer to RQ1: CPU instruction count is more suitable to evaluate time efficiency since it is
much more stable than execution time by achieving a 1000× smaller RSD of 0.003%∼0.005%, and
it is linearly correlated with execution time with Pearson correlation coefficient of 0.96∼1.0.

5.2 RQ2: Effectiveness of STGen and Distinguishability of Stressful Test Cases
To answer RQ2, we study the effectiveness of STGen on stressful test case generation compared
with three widely used LLM-based test case generation baselines. For the generated stressful test
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Table 4. Comparison between CPU Instruction Count and Execution time on different benchmarks. “RSD

(-)” indicates the average relative standard deviation of a certain metric when running multiple times on the

same ground truth solution. It evaluates the stability of different measurements. “Correlation” indicates the

Pearson correlation coefficient between CPU instruction count and Execution time.

Benchmark

RSD (-)

Correlation

CPU Instruction Count Execution Time

HumanEval 0.005% 5.65% 1.00
MBPP 0.004% 5.31% 1.00

Code Contests 0.003% 2.37% 0.99
APPS 0.003% 2.47% 0.96

Table 5. Comparison between different test cases. “Correctness” indicates the original correctness test cases.

“Instruction”, “Few-shot” and “Generator” indicate the stressful test cases generated by three baselines,

respectively. “RSD (+)” indicates the relative standard deviation achieved by test cases on different code

solutions generated by two powerful LLMs GPT-4o and Llama3.1. It evaluates the distinguishability of different

test cases in terms of time efficiency.

Level Method Accuracy Line Cov.

RSD (+)

Llama3.1 GPT-4o

Function

Correctness - 98.46 19.05% 21.35%

Instruction 83.67 83.87 20.69% 22.21%
Few-shot 87.07 81.46 22.32% 20.61%
Generator 86.91 81.84 22.86% 21.32%
STGen 98.64 96.01 27.26% 28.20%

File

Correctness - 95.68 15.73% 12.99%

Instruction 84.52 85.29 14.21% 11.04%
Few-shot 65.17 66.53 12.02% 8.95%
Generator 94.86 94.79 15.54% 13.17%
STGen 98.91 95.17 17.60% 14.79%

cases, we evaluate whether they can better distinguish different code solutions generated by LLMs.
We show the main results of the comparison between STGen and baselines in Table 5.

Effectiveness of STGen. To study how contracts can improve the accuracy of test cases, we
compare STGen with three baselines without contracts and report the accuracy at the third column
of Table 5 for function-level and file-level splits of COFFE. We do not report the accuracy of the
original test cases because they are manually drafted. From the table, we observe that STGen
achieves an accuracy of 98.64% and 98.91%, outperforming the baselines by up to 17.89% and 51.77%
in function-level and file-level splits, respectively. This suggests that almost all stressful test cases
generated by STGen are correct. Without knowledge enrichment and early validation by contracts,
on the contrary, baselines fail to generate about 5%∼35% of stressful test cases.
Apart from the accuracy, a correct test case is representative if it can cover most lines of the

target program. To ensure the quality of generated stressful test cases, we evaluate the line coverage
and report the results in the fourth column of Table 5. We find that STGen consistently achieves
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the highest line coverage of 96.01% and 95.17% for function-level and file-level stressful test cases,
respectively. This demonstrates that the stressful test cases generated by STGen can thoroughly
evaluate the time efficiency of the major code logic in target programs. We also note that the line
coverage achieved by STGen is slightly lower than that achieved by the original correctness test
cases. This is reasonable because the stressful test cases are much fewer than the correctness test
cases in COFFE, as can be seen in Table 2.
Distinguishability of Stressful Test Cases. To evaluate how well the stressful test cases

generated by STGen can distinguish the time efficiency of different code solutions, we sample 20
code solutions from two powerful LLMs, Llama3.1 and GPT-4o, for each problem in COFFE. We
then run the sampled solutions on different test cases and collect the CPU instruction count usage.
We calculate the RSD on the CPU instruction counts of the sampled 20 code solutions, and a higher
RSD indicates better distinguishability. We report the RSD on the code solutions of two models at
the fifth and sixth columns of Table 5.
Firstly, we observe that stressful test cases generated by STGen improve the RSD of original

correctness test cases by 43.10% and 32.08% on Llama3.1 and GPT-4o, respectively, at the function
level, and the improvements are 11.89% and 13.86% on Llama3.1 and GPT-4o, respectively, at the
file level. STGen also outperforms all three baselines in terms of RSD on both Llama3.1 and GPT-4o.
This demonstrates that stressful test cases generated by STGen can better distinguish different
code solutions than original correctness test cases and stressful test cases generated by baselines.
Secondly, we find that the generator-based prompting method achieves higher RSD than other
baselines. This verifies the effectiveness of generator test cases compared with raw test cases in
time efficiency evaluation. However, the generator-based prompting method cannot well handle
multiple parameters in function-level programs by achieving an accuracy of only 86.91%. STGen
mitigates this problem by generating expression test cases that follow the formats of raw test
cases but introduce small expressions to represent each input. As a result, the expression test cases
generated by STGen for function-level code solutions outperform the generator-based prompting
method by 19.25% and 32.27% in terms of RSD on Llama3.1 and GPT-4o, respectively.

Answer to RQ2: With knowledge enrichment and early validation by contracts, STGen is quite
effective in generating correct stressful test cases with an accuracy of about 99% and line coverage
of about 96%. The expression and generator test cases generated by STGen can better distinguish
different code solutions’ time efficiency with an RSD of up to 28.20% on GPT-4o.

5.3 RQ3: Time Efficiency of Code Generated by LLMs
Based on COFFE, we evaluate the time efficiency of code generated by different LLMs. We select
ten popular open-source LLMs and four popular closed-source LLMs, as shown in Table 3. We show
the Pass@1, efficient@1, and speedup of all LLMs on COFFE in Table 6.

Overall Time Efficiency. To evaluate the time efficiency of code generated by different models,
we study the efficient@1 and speedup. We use efficient@1 to evaluate the probability of an LLM to
generate a correct code solution faster than the best ground truth solution and speedup to evaluate
how fast the correctly generated code solutions are compared with the best ground truth solutions.
From Table 6, we identify that DeepSeek V2 Coder obtains the highest efficient@1 of 46.97% at the
function level and Llama3.1 obtains the highest efficient@1 of 46.51% at the file level. As for the
speedup, GPT-4o achieves the highest speedup of 8.28 at the function level, and Mixtral obtains the
highest speedup of 1.43 at the file level.
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Table 6. The correctness and time efficiency of code solutions generated by LLMs in Table 3 on COFFE.

Efficienct@1 and pass@1 are calculated upon all instances in COFFE, and speedup is calculated on correct

solutions generated by models. Models highlighted in gray are closed-source models. “Δ” indicates the

difference of efficient@1 and pass@1 in percentage (100% - efficient@1 / pass@1).

Model Size

Function-level File-level

Efficient@1 (Δ) Speedup Pass@1 Efficient@1 (Δ) Speedup Pass@1

Phi3 3.8B 26.65 (39%) 2.59 43.47 7.36 (67%) 0.08 22.63

MagicCoder
DS-6.7B 21.90 (32%) 3.04 32.41 12.02 (48%) 0.10 22.91
CL-7B 29.82 (36%) 3.41 46.48 5.04 (68%) 0.14 15.92

CodeLlama
7B 26.65 (31%) 2.49 38.69 4.26 (51%) 0.95 8.66
13B 25.60 (39%) 1.03 41.71 1.16 (48%) 1.02 2.23
34B 40.37 (38%) 3.51 64.74 22.87 (57%) 0.09 53.63

Llama3
8B 27.70 (35%) 3.91 42.46 0.00 (100%) 0.21 0.84
70B 40.90 (39%) 3.30 67.59 38.76 (44%) 0.14 68.99

StarCoder 15B 38.52 (37%) 3.52 61.31 21.71 (58%) 0.10 51.11

WizardCoder 15B 28.76 (41%) 1.95 48.49 10.08 (51%) 0.07 20.67

Mixtral 8×7B 25.59 (43%) 5.14 44.72 8.53 (63%) 1.43 22.91

DeepSeek V2 236B 46.70 (40%) 2.79 78.39 41.09 (54%) 0.18 89.94

DeepSeek V2 Coder 236B 46.97 (41%) 2.53 79.90 42.25 (46%) 0.44 78.77

Llama3.1 405B 39.58 (41%) 3.21 67.34 46.51 (48%) 0.90 89.11

Claude 3.5 Sonnet - 43.54 (44%) 4.90 77.64 39.15 (55%) 0.23 86.59

Gemini 1.5 Pro - 45.12 (40%) 1.76 75.38 42.64 (43%) 0.16 75.44

ChatGPT - 37.73 (45%) 2.46 68.19 39.15 (48%) 0.12 75.98

GPT-4o - 44.59 (43%) 8.28 77.64 43.02 (53%) 1.11 90.78

Finding 1: DeepSeek V2 Coder and Llama3.1 have the highest probability of generating efficient
code solutions with an efficient@1 of 46.97% and 46.51%, respectively. GPT-4o andMixtral generate
the most efficient code solutions with a speedup of 8.28 and 1.43, respectively.

Correctness vs. Time Efficiency When comparing the correctness and time efficiency of code
solutions generated by current LLMs, we find that the best efficient@1 are 46.97% and 46.51%, at
function level and file level, respectively, which are much lower than the best pass@1 of 79.90% and
90.78%. This indicates that almost half of the correctly generated code solutions are sub-optimal
since they are less efficient than ground truth solutions. Furthermore, the speedups achieved by
most LLMs in file-level code generation are lower than 1.0, and some LLMs even obtain a speedup
of lower than 0.1, indicating their generated code solutions are 10× slower than ground truth
solutions. This suggests that efficient code generation is a great challenge for current LLMs despite
their remarkable performance on correct code generation.

Finding 2: The performance of current LLMs drops significantly in efficient code generation
with the best efficient@1 of 46.97% and 46.51% at the function level and file level, compared with
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that in correct code generation with the best Pass@1 of 79.9% and 90.78%. This indicates that the
code solutions generated by current LLMs are correct but not time-efficient.

Function-level Code Generation vs. File-level Code Generation. In function-level code
generation, we observe that all LLMs achieve a speedup larger than 1.0, indicating that the code
solutions generated by current LLMs are more efficient than ground truths. However, only three
LLMs achieve a speedup larger than 1.0 in the file-level code generation. This suggests that current
LLMs cannot generate faster code solutions than existing solutions in COFFE. Besides, the effi-
cient@1 achieved by current LLMs at the function level is also better than that achieved by current
LLMs at the file level. For example, the efficient@1 of Phi3 drops by 72.38% from function-level
to file-level code generation. Furthermore, the performance drop from pass@1 to efficient@1 in
function-level code generation is 30%∼45%, smaller than 40%∼100% in file-level code generation.
This indicates that current LLMs perform much worse in file-level efficient code generation than
function-level efficient code generation.

Finding 3: Compared with function-level code generation, code solutions generated by current
LLMs are less efficient in file-level code generation, evidenced by the significantly lower speedup,
lower efficient@, and larger performance drop from pass@1 to efficient@1.

Impacts of Different Model Sizes. To study the impacts of different model sizes on the time
efficiency of code solutions generated by current LLMs, we observe the changes of pass@1 and
efficient@1 from smaller LLMs to larger LLMs. In both function-level and file-level code generation,
we find that larger LLMs can generally generate more correct solutions, evidenced by higher
Pass@1 obtained by larger LLMs. However, larger LLMs do not always generate more efficient code
solutions. For example, in function-level code generation, CodeLlama-34b achieves an efficient@1
of 40.37%, which is quite close to the efficient@1 of 40.90% achieved by Llama3-70b and 39.58%
achieved by Llama3.1-405b, but Llama3.1-405b is more than 10× larger than CodeLlama-34b. In
file-level code generation, Llama3-70b achieves an efficient@1 of 38.76%, which is also quite close
to the efficient@1 of 41.09% achieved by DeepSeek V2, and 42.25% achieved by Deep Seek V2 Coder,
but DeepSeek V2 is more than 3× larger than Llama3-70b.

Finding 4: Larger LLMs generally perform better in terms of Pass@1 but do not significantly
outperform smaller LLMs in terms of efficient@1, indicating larger parameter sizes of current
LLMs do not contribute much to efficient code generation.

In summary, based on the experiment results of 14 popular LLMs on COFFE, we study the time
efficiency of function-level and file-level code solutions generated by the LLMs in four aspects.
We find efficient code generation much more challenging for current LLMs than correct code
generation, especially for file-level efficient code generation. We also identify that larger LLMs do
not always perform better on efficient code generation.

6 Implications
Based on the findings we conclude in Sec. 5, we provide some implications for researchers who
build LLMs and practitioners who use LLMs in software development.
LLM Researchers.We identify that there is a large gap between correct code generation and

efficient code generation. This indicates that the current LLM-generated code is correct but sub-
optimal, and generating efficient code remains a great challenge, especially for file-level code
generation. This challenge cannot be effectively mitigated by just increasing the model size of
current LLMs. We recommend that LLM researchers consider the code structure and semantics
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when improving the time efficiency of LLM-generated code. Besides, LLM researchers should
also focus more on file-level code generation since current LLMs perform much worse on it than
function-level code generation.
Software Practitioners. As LLMs are gradually adopted in software development in product

environments, software practitioners face the problem of choosing LLMs. In function-level and
file-level code generation, generally, code solutions generated by DeepSeek V2 Coder and Llama3.1-
405b obtain the best time efficiency, respectively. However, we also find that some LLMs with middle
sizes, such as Llama3-70b and CodeLlama-34b, achieve competitive performance. We recommend
software practitioners adopt middle-sized LLMs to obtain similar performance on efficient code
generation with much lower computational costs.

7 Threats to Validity
Our research may face the following threats to the internal and external validity.

7.1 Threats to Internal Validity
Performance Measurement. The time efficiency measurement of code solutions generated by
LLMs can introduce errors. We propose to use CPU instruction count instead of execution time
to improve the stability of measurements. However, there still exist factors such as specific code
optimization techniques that introduce measurement errors. To mitigate the threats posed by the
errors in time efficiency measurements, we conduct all measurements in dockers [19] to ensure that
only one single process is running at the same time. Furthermore, we run the measurements for
each code solution 12 times and remove the highest and lowest measurements before calculating
the average metric. This could further reduce the errors introduced in a single measurement.
Baseline Implementation. Currently, there are no LLM-based stressful test case generation

methods that could be compared with STGen, so we modify three correctness test case generation
methods as our baselines. However, such modifications may result in performance changes. To
improve the validity of baselines, we run them on the most powerful and robust LLM GPT-4o [63].
Besides, we ask the baselines to generate 20 stressful test cases once and only choose the best 5
test cases for most evaluations except for accuracy. Therefore, we believe our implementations can
represent the best performance of baselines.

7.2 Threats to External Validity
Adaptation to Different Programming Languages. While code generation is a general task for
all programming languages, we mainly focus on the evaluation of Python code generation in this
paper. The code generation performance of LLMs on other programming languages such as C++ and
Java may be different from the experiment results we show in Sec. 5, as it could be affected by the
syntax and coding styles. This threatens the validity of our experiment results in other programming
languages. However, Python is the top 2 most popular programming language at GitHub [23] and
is the major programming language used to build the code generation benchmarks [5, 8, 27, 28,
33, 43, 51, 91]. Besides, our stressful test case generation method STGen is language-agnostic and
fully based on LLMs to generate stressful test cases, we believe it could be easily extended to build
benchmarks for other programming languages.

8 Related Work
8.1 LLMs for Code Generation
As a critical task to automate the software development process, code generation has drawn a lot
of attention in both the academia and industry. At the beginning, encoder-decoder models such
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as AlphaCode [43], CodeT5 [82], CodeRL [40], CodeT5+ [81] are directly trained on large code
corpus and obtain good performance on code generation. Recently, decoder-only models such as
Codex [9], CodeGen [59, 60], InCoder [22], CodeGeeX [93], SantaCoder [2], StarCoder [42, 52],
WizardCoder [53], CodeLlama [71], MagicCoder [84], DeepSeek-Coder [26] show superior perfor-
mance than encoder-decoder models on code generation. Besides, some general LLMs trained on
multiple types of data, such as Llama3[54], Llama3.1 [55], GPT-3.5 [61], GPT-4 [62] also demonstrate
competitive or even better performance compared with code LLMs.

8.2 Code Generation Benchmarks
Correctness Benchmarks. There are many benchmarks designed for the correctness evaluation
of code generated by LLMs. They provide contexts that indicate the functionality of the generated
code and several test cases to evaluate the correctness of the generated code. The benchmarks are
initially built from scratch by skilled developers and researchers. HumanEval [8] is a benchmark
that contains 164 Python programming problems with function signatures and docstrings. MBPP [5]
is a benchmark consisting of 974 basic Python programming problems with short functionality
descriptions. It also provides a sanitized version with verified ground truth solutions that have 427
problems. In order to comprehensively evaluate the performance of LLMs, some benchmarks are
built from code competition problems. APPS [28] contains 10,000 Python problems with different
difficulty levels and diversified ground truth solutions for each problem. Code Contests [43] is a
multi-lingual benchmark built from various competition sources and includes both correct and
incorrect human solutions for each problem. Apart from Code Contests, there are also other
multi-lingual benchmarks such as xCodeEval [38] and HumanEval-X [93]. The above-mentioned
benchmarks focus on the evaluation of function-level or file-level code generation. There are some
research efforts, such as RepoEval [91], RepoBench [51], SWE-Bench [36], and CrossCodeEval [18],
devoted to the evaluation of the repo-level code generation performance.

Time Efficiency Benchmarks. Despite the well-explored evaluation for the correctness of code
generated by LLMs, the time efficiency of code generated by LLMs is under-explored. Effibench [33]
is the first benchmark designed for evaluating the time and memory efficiency of code generation.
It selects efficiency-critical problems tagged “LeetCode” and prompts GPT-3.5 to generate test
cases with different input sizes and data distribution. However, the problems in this benchmark
are too difficult, so most open-source models cannot even generate correct solutions. Besides, it
adopts execution time as the performance metric, which is unreliable to distinguish the efficiency of
different code solutions. There is also somework [39, 78, 89] on traditional performance engineering,
but they are not suitable for evaluating random responses from LLMs.

8.3 LLM-Based Test Case Generation
Apart from the advances in code generation, LLMs have also been demonstrated to improve
software testing [17]. A lot of work has comprehensively evaluated the ability of LLMs on test
case generation [37, 41, 57, 66, 72]. Most recently, Chen et al. [11] propose ChatUniTest, a unit test
generation framework based on LLM by utilizing innovative mechanisms such as adaptive focal
context and generation-validation-repair mechanisms. Liu et al. [49] propose a novel LLM-powered
test oracle generation approach that combines LLMs and differential testing. Hossain et al. [31]
propose TOGLL, a fine-tuned LLM on designed instruction prompts to generate test oracle for
Java projects. Wang et al. [79] propose TestEval to generate test cases that cover certain lines,
branches, and paths of the code under test. Despite the effectiveness of previous approaches on
correctness test case generation, there is no work on stressful test case generation that aims to
generate large test inputs to evaluate the time efficiency of the code under test. In this paper, we
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propose a novel approach STGen to generate stressful test cases for Python projects with high
accuracy and coverage.

9 Conclusion
In this paper, we propose a new benchmark COFFE for the time efficiency evaluation of LLM-
generated code. To address the challenges of existing correctness code generation benchmarks, we
propose a novel stressful test case generation method STGen that incorporates contracts and two
test case formats to improve the accuracy. We also introduce a new time efficiency metric efficient@k
based on CPU instruction count that stably evaluates both the correctness and time efficiency of
code. Based on COFFE, we evaluate 14 popular LLMs and identify four important findings. We
provide implications based on the findings for LLM researchers and software practitioners.

10 Data Availability
The code and data of STGen and COFFE are available at https://github.com/JohnnyPeng18/Coffe.
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