
1

Revisiting, Benchmarking and Exploring API
Recommendation: How Far Are We?

Yun Peng†, Shuqing Li†, Wenwei Gu†, Yichen Li†, Wenxuan Wang†, Cuiyun Gao∗‡§¶, and Michael Lyu†
†The Chinese University of Hong Kong, Hong Kong, China

‡Harbin Institute of Technology, Shenzhen, China
§Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen, China

¶Peng Cheng Laboratory, Shenzhen, China
{ypeng, sqli21, wwgu21, ycli21, wxwang, lyu}@cse.cuhk.edu.hk, gaocuiyun@hit.edu.cn

Abstract—Application Programming Interfaces (APIs), which encapsulate the implementation of specific functions as interfaces,
greatly improve the efficiency of modern software development. As the number of APIs grows up fast nowadays, developers can hardly
be familiar with all the APIs and usually need to search for appropriate APIs for usage. So lots of efforts have been devoted to
improving the API recommendation task. However, it has been increasingly difficult to gauge the performance of new models due to the
lack of a uniform definition of the task and a standardized benchmark. For example, some studies regard the task as a code completion
problem, while others recommend relative APIs given natural language queries. To reduce the challenges and better facilitate future
research, in this paper, we revisit the API recommendation task and aim at benchmarking the approaches. Specifically, the paper
groups the approaches into two categories according to the task definition, i.e., query-based API recommendation and code-based API
recommendation. We study 11 recently-proposed approaches along with 4 widely-used IDEs. One benchmark named APIBench is
then built for the two respective categories of approaches. Based on APIBench, we distill some actionable insights and challenges for
API recommendation. We also achieve some implications and directions for improving the performance of recommending APIs,
including appropriate query reformulation, data source selection, low resource setting, user-defined APIs, and query-based API
recommendation with usage patterns.

Index Terms—API recommendation, benchmark, empirical study

✦

1 INTRODUCTION

Application Programming Interfaces (APIs) provided by
software libraries or frameworks play an important role in
modern software development. Almost all programs, even
the basic “hello world!” program, include at least one API.
However, there are a huge number of APIs from differ-
ent modules or libraries. For example, the Java standard
library [51] provides more than 30,000 APIs. It is therefore
infeasible for developers to be familiar with all APIs. To
address this problem, many approaches are proposed to
recommend APIs based on input queries, which describe
the programming task in natural language, or surrounding
context, i.e., the code already written by developers.

However, a uniform definition of the current API recom-
mendation task is still absent, making the task hard to be fol-
lowed by potential researchers. Some studies [7], [32], [46],
[60], [62] regard the task as a code completion problem, and
recommend any code tokens including APIs. These studies
focus on improving the prediction results of all the tokens
instead of only APIs. Some studies [23], [27], [38], [56], [58]
recommend relative APIs on different levels given natural
language queries. Besides, the evaluation results are difficult
to be reproduced by future related work. For example, for
query-based API recommendation, manual evaluation is
generally adopted, so the performance reported by different
studies can hardly be aligned. Comparing with widely-

* corresponding author.

used Integrated Development Enviroments (IDEs) or search
engines is another commonly adopted yet inconsistent eval-
uation strategy in previous research. Therefore, to better fa-
cilitate future exploration of the API recommendation task,
in this paper, we summarize the recent related approaches
and build a general benchmark named APIBENCH.

To facilitate the benchmark creation, we group the recent
related approaches into two categories according to the
task definition: query-based API recommendation and code-
based API recommendation:

1) query-based API recommendation. Approaches for
query-based API recommendation aim at providing related
APIs to developers given a query that describes program-
ming requirements in natural language. The approaches can
inform developers which API to use for a programming
task.

2) code-based API recommendation. Approaches for
code-based API recommendation aim at predicting the next
API given the code surrounding the point of prediction.
They can directly improve the efficiency of coding.

Besides the unreproducible evaluation, the two groups
of studies face their own challenges. 1) For query-based ap-
proaches, high-quality queries play a critical role in accurate
recommendation. However, there may exist a knowledge
gap between developers and API designers in choosing
terms for describing queries or APIs. For example, devel-
opers who do not know the term “heterogeneous list” in API
documents would use other words such as “list with dif-

2

ferent types of elements” in the query. Whether current query
reformulation techniques are effective for API recommenda-
tion and how effective it is are still remaining unexplored.
2) For code-based approaches, the quality of code before
the recommendation point also affects the recommendation
performance. Generally, the approaches are evaluated by
simulating an actual development, i.e., some parts of a
project are removed for imitating a limited context. The
APIs to recommend may be located in the front, middle,
or back of the code, so exploring the impact of different
recommendation points is important for understanding the
recommendation capability of existing approaches. Other
factors such as whether the APIs are standard or user-
defined, lengths of given context, and different domains
can also influence the recommendation performance, which
have not yet been fully investigated.

To comprehensively understand the above challenges
and align the performance of current approaches, we
first build a benchmark named APIBENCH. APIBENCH
is built on Python and Java, and involves two datasets
for evaluation, named as APIBENCH-Q and APIBENCH-
C for query-based and code-based approaches, respectively.
APIBENCH-Q contains 6,563 Java queries and 4,309 Python
queries obtained from Stack Overflow and API tutorial
websites. APIBENCH-C contains 1,477 Java projects with
1,229,698 source files and 2,223 Python projects with 414,753
source files obtained from GitHub. Based on APIBENCH, we
study the following research questions:

• RQ1: How effective are current query-based and
code-based API recommendation approaches?

• RQ2: What is the impact of query reformulation
techniques on the performance of query-based API
recommendation?

• RQ3: What is the impact of different data sources on
the performance of query-based API recommenda-
tions?

• RQ4: How well do code-based approaches recom-
mend different kinds of APIs?

• RQ5: What is the performance of code-based ap-
proaches in handling different contexts?

• RQ6: How well do code-based approaches perform
in cross-domain scenarios?

APIBENCH involves the implementation of the related
approaches proposed in the recent five years, specifically
including five query-based approaches and five code-based
approaches. In RQ1, we compare the performances of the
approaches in APIBENCH. To answer RQ2 and RQ3, we
apply four popular query reformulation techniques to the
queries of APIBENCH-Q and observe the performance of
the query-based approaches given reformulated queries. To
answer RQ4 to RQ6, we analyze the APIs in APIBENCH-C
from different aspects and study the performance of code-
based approaches under different experimental settings.

Key Findings. Through the large-scale empirical study,
we achieve some findings and summarize the key findings
as below.

(1) For query-based API recommendation:

• While current approaches make a good progress
on class-level recommendation, recommending the
exact API methods is still a challenging task.

• Query reformulation techniques, including query ex-
pansion and query modification, are quite effective
in improving the performance of query-based ap-
proaches.

• Adding data sources such as Q&A forums and tu-
torials that are more similar to real-world queries
can significantly improve the performance of current
approaches.

(2) For code-based API recommendation:

• Recent deep learning models such as Transformers
show superior performance on this task. Meanwhile,
current IDEs can achieve competitive performance as
recent pattern-based and learning-based approaches.
They work far more than just recommending APIs
based on alphabet orders.

• Current approaches are effective to recommend APIs
from standard libraries and popular third-party li-
braries, but their performance drops a lot when
recommending user-defined or project-specific APIs.

• Approaches trained on one single domain face the
problem of cross-domain adaptation. Approaches
trained on multiple domains achieve satisfying per-
formance when testing on most single domains, and
they even outperform those trained on correspond-
ing single domains.

Based on the findings, we conclude some implications
and suggestions that would benefit future research. On the
one hand, query-based API recommendation approaches
should be built along with query reformulation techniques
to handle queries with different qualities. We also encourage
future work to leverage different data sources and few-shot
learning methods to address the low resource challenge in
query-based API recommendation. On the other hand, we
suggest future code-based API recommendation approaches
focus on improving the performance of recommending user-
defined APIs as it is currently the major bottleneck.

Contributions. To sum up, our contribution can be con-
cluded as follows.

• To the best of our knowledge, we are the first to sys-
tematically study both query-based and code-based
API recommendation techniques on two large-scale
datasets including Java and Python.

• We build an open-sourced benchmark named
APIBENCH to fairly evaluate query-based and code-
based approaches.

• We study how different settings can impact the
performance of current approaches, including query
quality, cross domain adaptation, etc.

• We conclude some findings and implications that
would be important for future research in API rec-
ommendation.

The rest of this paper is organized as follows. We present
the background and regular API recommendation process
in Section 2. We describe the details of APIBENCH, current
baselines and evaluation metrics in Section 3. Then we intro-
duce the experiment results and potential findings on query-
based and code-based API recommendation in Section 4 and
Section 5, respectively. Based on the findings, we conclude

3

some implications and future directions in Section 6. Finally,
we discuss threats to validity and conclusion in Section 7
and Section 8, respectively.

2 BACKGROUND AND RELATED WORK

In this section, we summarize the query-based approaches
and code-based approaches, respectively.

2.1 Query-Based API Recommendation Methods

We describe the typical query-based API recommendation
process in Figure 1. Given a query “Calculate int value
square root”, query reformulation techniques first modify
the query as “return int value square root” or expand it as
“finally calculate int value square root”. A knowledge base
built upon available data sources is also prepared for API
candidate selection. Based on the knowledge base, retrieval-
based methods or learning-based methods recommend the
APIs relevant to the queries.

2.1.1 Query Reformulation Techniques
Input queries can be short in length or vague in semantics.
Besides, there may exist a knowledge gap between devel-
opers and search engines in query description. For render-
ing search engines better understand the query semantics,
query reformulation is a common pre-processing method.
In general, there are two major types of query reformulation
approaches:

1) query expansion, which adds extra information to the
original queries;

2) query modification, which modifies, replaces or
deletes some words in the original queries.

Query expansion. Query expansion aims at identifying
important words that are missing in the input queries.
The topic is originally stemmed from the field of natural
language processing (NLP). For example, the work [39]
utilizes word embeddings to map words in the vector space
and finds similar words to enrich the queries. For the
API recommendation task, since APIs are encapsulated and
organized according to classes and modules, class names
and module names are important hints for recommenda-
tion. Rahman et al. [56], [58] propose to use keyword-API
class co-occurrence frequencies and keyword-keyword co-
occurrence frequencies to build the relationship between
words and API classes, and add the suggested API class
for query expansion.

Query modification. Query modification aims at miti-
gating both the lexical gap and knowledge gap between
the user queries and descriptions in knowledge base. The
lexical gap, such as mis-spelling, can be easily addressed
by spelling correction and synonym search, etc. Recent
work focuses on how to mitigate the knowledge gap by
replacing inappropriate words in queries. Mohammad et al.
[4] extract important tokens in code, and Sirres et al. [65]
leverage discussions and code from Stack Overflow posts
to build a knowledge base. Cao et al. [8] collect query
reformulation history from Stack Overflow and propose
a Transformer-based approach to learn how developers
change their queries when search engines do not return
desired results.

2.1.2 Recommendation with Knowledge Base
Knowledge base. API recommendation approaches gener-
ally require a knowledge base that contains all the existing
APIs as the search space. There are three primary sources for
the knowledge base creation, including: 1) official documen-
tations which contain comprehensive descriptions about the
API functionality and structure. 2) Q&A forums, which pro-
vide the purposes of APIs and different API usage patterns.
Many studies [27], [55] leverage the Q&A pairs from Stack
Overflow to select API candidates. 3) Wiki sites, which
describe concepts that link different APIs. For example, Liu
et al. [38] utilizes API concepts from Wikipedia to help build
API knowledge graphs.

Retrieval-based methods. Retrieval-based methods re-
trieve API candidates from the knowledge base and then
rank the candidate APIs by calculating the similarities be-
tween queries and APIs. For example, Rahman et al. [56],
[58] utilize the keyword-API occurrence frequencies and
API-API occurrence frequencies to find the most relevant
APIs. Huang et al. [27] first identify the similar posts
from Stack Overflow by computing query-documentation
similarities and choose the APIs mentioned in posts as
candidates. Liu et al. [38] build an API knowledge graph
to represent relationships between APIs and then calculate
the similarities between queries and certain parts of API
knowledge graph to rank the APIs.

Learning-based methods. Another type of method is to
automatically learn the relationships between queries and
APIs based on deep learning techniques. The knowledge
base provides query-API pairs as the ground truth. For ex-
ample, Gu et al. [23] formulate the task as a translation prob-
lem in which a model is built to translate word sequences
into API sequences. They propose an RNN model with a
encoder-decoder structure to implement the translation.

2.2 Code-Based API Recommendation Methods
We describe the workflow of code-based API recommenda-
tion in Figure 2. Given a target code, context representation
is an essential step. Based on the extracted context, pattern-
based methods or learning-based methods are adopted by
previous studies to recommend the next API.

2.2.1 Context for the Target Code
Most code-based API recommendation methods regard the
code before the recommendation point as the context. We
name such context as internal context since it only considers
code in the current source code or current function body. For
example, Line 1 ∼ 6 of the target code in Figure 2 belongs to
internal context. Xie et al. [70] find that replacing external
APIs in code (such as Arrays.asList() in Figure 2) with
their implementations can help the identification of com-
mon usage patterns. They propose to build a hierarchical
context by integrating the implementation out of the current
source file. We name the implementation of external APIs as
external context.

2.2.2 Context Representation
We divide the context representation methods into two
types, i.e., pattern-based representation and learning-based
representation. Pattern-based representations [12], [48],

4

Original Query:
Calculate int value square root

API Candidates

Retrieval-based
Methods

Official Documentations
Q&A Forums

API Tutorial Sites

Recommendations:

java.lang.Math.sqrt(),
java.lang.Math.nextDown(),

java.lang.Math.cbrt()
....Learning-based

Methods

Query - API Pairs
Official Documentations

Q&A Forums
API Tutorial Sites

finally calculate int value square root

Return int value square root

Query Modification

Query Expansion

Fig. 1. The typical query-based API recommendation framework.

1 public class Sort {
2 public static void main(String args[]) {
3 String[] strArray =
4 new String[] { "example" };
5 List l = Arrays.asList(strArray);
6 Collections.<Recommendation Point>;
7 ...
8 }
9 }

Target Code

Implementation of String,
Arrays.asList(),...

External Context

(c) AST MethodDeclaration

LocalVariable
Declaration

ClassDeclaration

LocalVariable
Declaration

Current Code Before
Recommendation Point

Internal Context

......

Pattern-based
Methods

Learning-based
Methods

String Arrays.asList() ...
func1 0 1 ...

func2 1 0 ...

main 1 1 ...

(d) API Matrix

Context Representation

Recommendations:

java.util.Collections.sort(),
java.util.Collections.addAll(),

java.util.Collections.min()
....

(a) API Sequence: String, Arrays.asList, ...

(b) Token Flows: public class sort public ...

Fig. 2. The typical code-based API recommendation framework.

[49], [69], [70] do not consider all the code tokens. Instead,
they only identify APIs to build API usage sequences, as
shown in Figure 2 (a), API matrix, as shown in Figure 2 (d),
or API dependency graphs to represent the current context.
Learning-based representations [24], [26], [32], [60], [67]
usually represent the context with token flows, as illustrated
in Figure 2 (b), or other syntax structures such as Abstract
Syntax Trees (ASTs), as illustrated in Figure 2 (c).

2.2.3 Recommendation Based on Context
Pattern-based methods. API recommendation is inherently
a recommendation task, so some studies [12], [49] follow the
collaborative filtering (user-item) methodology of traditional
recommendation systems [61]. As shown in Figure 2 (d),
they regard the internal context as the users and APIs as the
items. They then calculate the similarities between different
users to find the most similar API for recommendation.
However, the methods do not consider the relationships
between APIs. More recent work [69], [70] build API de-
pendency graphs or mines association rules to capture API
usage patterns.

Learning-based methods. Hindle et al. [26] discover the
naturalness of software, rendering it possible to deploy ma-
chine learning or deep learning methods on code. Different
from pattern-based methods that consider the relationships
between API occurrences, learning-based methods regard
API as a single code token, and reformulate the code-based
API recommendation problem into a next token prediction
problem. Many statistical language models [47], [59], [60],
[67] are proposed to predict the next code token. Besides

TABLE 1
Statistics of APIBENCH-Q. Ori. represent the original queries, Exp.

represent the expanded queries produced by query expansion
techniques, Mod. represent the modified queries produced by query

modification techniques.

PL
Stack Overflow Tutorial Websites

Ori. Exp. Mod. Ori. Exp. Mod.

Python 1,925 78,157 100,100 2,384 95,360 123,968
Java 1,320 80,343 68,640 5,243 319, 783 272,636

using the token sequences, more recent work [24], [32] try to
leverage syntax and data flow information for more accurate
prediction.

Note that we do not aim to provide a comprehensive
summary about all query-based and code-based API recom-
mendation approaches but to choose some representatives
to describe the general workflow in this section. For a more
comprehensive literature review, we refer the readers to
previous surveys and empirical studies [34], [63], [64].

3 METHODOLOGY

In this section, we introduce the scope of the studied APIs,
the preparation of benchmark datasets, and implementation
details.

5

TABLE 2
Statistics of Benchmark APIBENCH-C. The data includes both the training set and testing set.

PL Domain #Projects #Files
LOC

(per func)
#API

(per func)
Total number of APIs (only testset) LOC Threshold

of Short Func
LOC Threshold

of Long FuncStandard User-defined Popular

Python

General 899 230,064 15.24 5.55 1,363,240 1,747,878 54,244 8.875 54.875
ML 323 46,556 13.89 6.08 629,437 339,821 125,377 12.65 46.05

Security 126 15,785 18.98 6.72 111,393 64,809 3,613 6 86.5
Web 568 82,771 14.14 5.05 369,114 241,602 11,832 7.35 51.625

DL 307 39,577 14.58 6.25 413,295 220,228 76,654 11.675 52.525

Java

General 935 1,056,790 11.16 4.06 5,164,481 3,808,124 36,178 6.26 19.2
Android 377 87,468 8.24 2.91 517,461 267,141 75,069 7.28 16.8

ML 52 41,377 12.82 4.77 194,013 136,963 0 7.52 19.74
Testing 55 23,618 9.93 3.98 105,577 55,241 22 6.44 15.68

Security 58 20,445 12.35 5.32 125,558 74,471 1,243 6.88 20.78

3.1 Scope of APIs

To fairly compare the current API recommendation ap-
proaches, benchmark datasets should be prepared, during
which the scope of studied APIs firstly needs to be defined.
In this work, we focus our evaluation on two popular
programming languages, i.e., Python and Java.

For facilitating the analysis of the challenges in API
recommendation, we divide all APIs into standard APIs,
user-defined APIs, and popular third-party APIs. The standard
APIs refer to the APIs that are clearly defined and built-in
in corresponding programming languages while the user-
defined APIs are defined and used in projects along with
popular third-party APIs. Following previous work [27], [38],
[56], [58] we evaluate query-based API recommendation
methods only on the standard APIs since currently standard
APIs have the most comprehensive documentations and
extensive discussions to build the knowledge base. We
evaluate code-based API recommendation methods on all
three kinds of APIs. The details of each kind for different
programming languages are depicted below.

(1) Standard Java APIs. We choose the version Java 8
for our analysis since it is the most widely-used version
in current projects according to the 2020 JVM Ecosystem
Report [66]. We collect 34,072 APIs from the Java documen-
tation [51] as standard APIs.

(2) Android APIs. We choose APIs from the Android
library [20] since Android is the most popular application
of Java programs. We collect 11,802 APIs from the official
documentation of Android in total.

(3) Standard Python APIs. As Python Software Foun-
dation has stopped the support for Python 2, currently
only 6% of developers are still using Python 2, according
to the development survey conducted by Jetbrains [28].
Considering that APIs of different versions above 3.0 are
similar, we choose the newest version 3.9 to ensure the
compatibility, and collect 5,241 APIs from Python standard
library [53] as the standard APIs.

(4) Popular Python third-party APIs. Python is well
extended by a lot of third-party modules. We choose five
widely-used modules with sufficient documentations, in-
cluding flask [14], django [11], matplotlib [41], pandas [52]
and numpy [50]. We collect 215, 700, 4,089, 3,296 and 3,683
APIs from them, respectively.

(5) User-defined APIs. For code-based API recommen-
dation, we regard all the functions defined in current
projects as user-defined APIs. We do not explicitly collect
them as a fixed set because they vary across projects. By
inspecting the implementations, we can always identify the
user-defined APIs.

3.2 Benchmark Datasets
In this section, we describe how we build the benchmark
datasets APIBENCH-Q and APIBENCH-C.

3.2.1 Creation of APIBENCH-Q
We build the benchmark dataset APIBENCH-Q by mining
Stack Overflow and tutorial websites. Note that we find
that currently there is no query-based API recommendation
approach specially designed for Python programs, but we
still collect the query benchmark for it to facilitate further
research investigation.

Mining Stack Overflow. As one of the most popular
Q&A forums for developers, Stack overflow contains much
discussion about the usage of APIs. Stack Overflow is the
primary source for building APIBENCH-Q. We first down-
load all posts from Aug 2008 to Feb 2021 on Stack Overflow
(SO) via Stack Exchange Data Dump [13]. Each post is
associated with a tag about the related programming lan-
guage. We filter out the posts not tagged as Java or Python,
resulting in 1,756,183 Java posts and 1,661,383 Python posts.
Similar to other studies related to Stack Overflow mining
[27], [55], we further filter out the posts based on the
following rules:

• To increase the quality of the posts, we remove the
posts that are not answered or do not have endorsed
answers.

• We remove the posts that do not contain the HTML
tag <code>, because we cannot extract any API from
them.

• We remove the posts that contain code snippets
longer than two lines, since we focus on single API
recommendation in this paper and code snippets
longer than two lines usually contain an API se-
quence. For multiple code snippets in one post, we
remove the post only if all code snippets are longer
than two lines.

6

• We use string matching to find the APIs in the code
of each post and remove the posts that do not contain
any APIs involved in this paper, as described in
Section 3.1.

After the rule-based filtering, we obtain 156,493 Python
posts and 148,938 Java posts that contain descriptions about
APIs. However, some of the posts are not directly related
to API recommendation. For example, some posts only ask
about comparing two similar APIs. The unrelated posts are
hard to be automatically identified by rules. To ensure the
relatedness of the posts in our benchmark dataset, we invite
16 participants with an average of 3-year development
experience in Python or Java for manually checking. For
each post, two of the participants are involved to check the
following aspects:

1) whether the query asks about API recommendation;
2) whether the standard APIs recognized by the previous

rules are intact, i.e., including the whole class and method
names.

3) whether the APIs in answers exactly address the
query.
If two participants provide the same answers for one post
and also one of the above three aspects is not satisfied,
we directly remove the post. If the two participants do not
reach an agreement, the post will be forwarded to one of the
authors to make a final decision.

As the remaining posts are still too many to be manually
checked, we conduct two rounds of annotations. In the first
round of annotations, we ask the annotators to label 100
randomly selected posts and conclude the reasons for the
cases that they think are not about API recommendation.
Then we collect the keywords that frequently appear in
these unrelated cases, and remove the posts whose titles
contain such keywords. For example, some post titles may
contain some specific error names such as “AttributeError:
‘Namespace’ object has no attribute”. We identify these titles
and remove them because such posts tend to be related to
debugging. However, we will keep the posts if the titles
also contain the word “how”, since we believe that the
posts are likely to ask about error handling APIs. Although
the filtering strategy is coarse, we can remove some noisy
posts and facilitate manual annotation. In the second round
annotations, we ask annotators to label all the remaining
posts. It takes about one month to complete the two-round
annotation process. After both rounds of annotations, we
manually check 13,775 posts, in which 1,262 posts do not
reach an agreement by the annotators and need further
check by one of the authors. We use the commonly-used
Fleiss Kappa score [15] to measure the agreement degree
between the two annotators and the value is 0.77. The result
indicates a high agreement between them. Based on the
manual check, 3,245 of the 13,775 labeled posts remain. We
take the titles of 3,245 posts as queries following previous
studies [8], [27], and finally we get 1,925 Python queries
and 1,320 Java queries. They comprise the first part of our
benchmark APIBENCH-Q, as shown in the second column
of Table 1.

Mining tutorial websites. API tutorial websites are the
second major source of query-API pairs. We choose three
popular API tutorial websites GeeksforGeeks [1], Java2s [2]

Fig. 3. Distribution of code lines per function for projects under general
domain (Left: Python, Right: Java).

and Kode Java [3] to establish APIBENCH-Q. Different from
Stack Overflow that contains discussion on various topics,
API tutorial websites focus on providing examples of how
to use APIs. Therefore, manually annotating the relatedness
of each query to API recommendation is not necessary. We
adopt similar rules as mining Stack Overflow to filter out
those without code snippets or associated with large code
snippets. We finally collect 5,243 Java queries and 2,384
Python queries, which comprise the second part of our
benchmark APIBENCH-Q, as shown in the fifth column of
Table 1.

Note that we include all queries and corresponding APIs
as our test set in APIBENCH-Q. We do not build a uniform
training and validation set for query-based API recommen-
dation approaches because the data sources used by current
work are quite different. For example, using extra data
sources is a major contribution for BIKER [27]. Lucene [16]
does not need the training set at all. It is hard for us to
build a unified training set for training all the approaches. To
prevent potential data leakage, we remove the instances that
overlap between training sets used by current approaches
and APIBENCH-Q in preprocessing phase.

3.2.2 Creation of APIBENCH-C

We create the benchmark dataset APIBENCH-C by mining
GitHub. GitHub [42] is one of the most popular websites for
sharing code and includes large numbers of code reposito-
ries on different topics and programming languages.

In order to explore the performance of API recommen-
dation under different domains, we first determine the
domains for analysis. According to the JetBrains’ developer
survey and topic labels provided by GitHub1 , we choose
four popular domains for Python and Java, respectively, as
shown in Table 2. For Python, we consider the domains
“Machine Learning” (ML), “Security”, “Web”, and “Deep
Learning” (DL); while for Java, we involve domains “An-
droid”, “Machine Learning” (ML), “Testing”, and “Secu-
rity”. For each domain, we focus on the repositories tagged
with the corresponding topic labels. For example, the “ML”
domain only covers the repositories with the “machine
learning” tag. As GitHub automatically aggregate all re-
lated projects under each domain, we directly collect 500
repositories with the most stars and 500 repositories with

1. https://github.com/topics

7

TABLE 3
The query reformulation techniques and query-based API

recommendation approaches involved in the paper. For tools, the years
they were last updated are listed. The column name “PL” indicates the

applicable programming language.

Approach
Category/

Data Source
PL Venue Year

Query Reformulation

Google
Prediction Service [22]

Query expansion,
modification

Any - 2021

NLPAUG [40]
Query expansion,

modification
Any - 2021

SEQUER [8]
Query expansion,

modification
Any ICSE 2021

NLP2API [56] Query expansion Java ICSME 2018

Query-Based API Recommendation

RACK [58]
Official documentation,

Stack Overflow
Java ICSE 2016

KG-APISumm [38]
Official documentation,

Wikipedia
Java FSE 2019

Naive Baseline Official documentation Any - 2021

DeepAPI [23] Official documentation Java FSE 2016

Lucene
[16]

Official documentation Any - 2021

BIKER [27]
Official documentation,

Stack Overflow
Java ASE 2018

the most forks on GitHub2. Besides the specific domains,
we also build a “General” domain which only considers
the popularity of repositories. For the “General” domain,
we collect 1,000 repositories with the most stars and 1,000
repositories with the most forks on GitHub regardless of the
topics.

Not all the collected repositories are applicable for code-
based API recommendation. Some popular repositories do
not contain enough code, e.g., only including documenta-
tions. To remove such repositories, we use cloc [5] to scan
the code in each repository and filter out the repositories
that 1) have fewer than 10 files or 2) have fewer than 1000
lines of code or 3) have code in Python or Java but with
the ratio less than 10%. The number of projects, number of
files, and average number of code lines for each domain of
APIBENCH-C are shown in Table 2.

As most approaches [19], [24], [32], [49], [60] for code-
based API recommendation require a training set to learn
the API patterns or train the models, we split APIBENCH-C
into a training set and a test set with a ratio of 80% and 20%,
respectively. Note that we do not split a project both into
the training set and test set, but put all the files of the same
project into either the training set or test set, because Alon et
al. [6] and LeClair et al. [36] find that code in the same
project usually share the same variable names and code
patterns, and splitting without considering project can cause

2. The collection was conducted during April 2021.

TABLE 4
The code based API recommendation baselines included in this

empirical study. For tools we list the year of its most recent update time.
The column name “PL” indicates the applicable programming language.

Approach Representation PL Venue Year

Practical IDE

PyCharm [30] Code tokens Python - 2021

Visual Studio Code [43] Code tokens Python - 2021

Eclipse [17] Code tokens Java - 2021

IntelliJ IDEA [29] Code tokens Java - 2021

Approach in Academia

TravTrans [32] AST Python ICSE 2021

PyART [24]
Token flow
Data flow

Python ICSE 2021

Deep3 [59] AST, DSL Python ICML 2016

FOCUS [49] API Matrix Java ICSE 2019

PAM [18] API sequence Java FSE 2016

PAM-MAX API sequence Java FSE 2016

data leakage. For the approaches requiring a validation set,
we prepare it from the training set.

In order to study the impact of different recommen-
dation points and different lengths of functions on the
performance of current approaches, we analyze the average
length of functions in each repository. we leverage Kernel
Density Estimation (KDE) with Gaussian kernels to simulate
the distributions. The distributions of the “General” domain
for the Python and Java datasets are depicted in Figure 3.
From the figure, we observe that function lengths are almost
normally distributed. Most Python functions contain 5 ∼ 30
lines of code (LOC) and most Java functions contain 5 ∼ 20
lines of code. For studying the impact of function lengths,
we divide the functions into extremely short functions,
functions of moderate lengths, and extremely long functions
according to the confidence interval under 90% confidence
level. The confidence interval can be directly calculated
by the standard deviations and means. We first determine
the confidence interval of functions in different domains
using standard deviations and regard the functions with
lengths in the confidence interval as functions of moderate
lengths. We regard functions with lengths smaller than
the confidence interval as extremely short functions and
functions with lengths larger than the confidence interval as
extremely long functions. Note that except for the study on
the impacts of function length, in other experiments we only
consider functions of moderate lengths to guarantee that

8

our collected data is representative. The detailed thresholds
of confidence intervals for distinguishing extremely long
and short functions are illustrated in Table 2. We study
the impact of function lengths on the performance of code-
based approaches in Section 5.3.

In order to study the performance of current approaches
on different kinds of APIs, we convert source files of each
repository into ASTs and extract all the function calls in
them. We label a function call as a standard API or popular
third-party API if it matches one of the APIs collected in
Sec. 3.1. We label a function call as a user-defined API if its
implementation can be found in the current repository via
import analysis. The average number of API calls per func-
tion, number of standard APIs and number of user-defined
APIs are shown in columns 6 ∼ 8 of Table 2, respectively.

3.3 Implementation Details
In this section, we describe the details of each approach
involved in the benchmark and the metrics for evaluation.

Query reformulation techniques. We choose four pop-
ular query reformulation techniques, including Google
Prediction Service [22], NLPAUG [40], SEQUER [8], and
NLP2API [56]. The detailed description of each technique is
illustrated in Table 3. Google prediction service is included
as one of the most effective approaches in practice, while
SEQUER [9] is the state-of-the-art approach. NLPAUG [40]
is considered since it is widely used for query reformulation
in many NLP studies [31], [45], [54], [71]. We also include
NLP2API [57] since it differs from major reformulation
methods by first predicting the API class related to the query
and then adding the predicted API class into the query.

Query-based API recommendation approaches. We
choose five query-based API recommendation approaches
published by recent top conferences, including KG-
APISumm [38], BIKER [27], RACK [58], and DeepAPI [23],
along with a popular search library Lucene [16]. The de-
tailed description of each baseline is shown in Table 3.
We reproduce the five approaches based on the replica-
tion packages released by the authors. Besides, we build
a naive baseline that recommends APIs by computing the
similarities between queries and API descriptions based on
BERTOverflow [35]. The native baseline serves as an indi-
cator of the basic performance of similarity-based models.
We also notice that different sources are adopted by the
approaches for creating the knowledge base. For example,
the naive baseline and DeepAPI only consider official doc-
umentation, while BIKER and RACK also involve the Q&A
forum – Stack Overflow. We list the knowledge source of
each approach in Table 3. During implementation, we do
not align the sources of the approaches, since the sources
are claimed as contributions in the original papers. Instead,
we design a separate RQ to study the impact of knowledge
sources on the performance of API recommendations.

During studying the impact of query reformulation on
the recommendation performance, we implement all the
four query reformulation techniques for each of the six
API recommendation baselines because all the baselines do
not integrate query reformulation techniques in the original
papers.

Code-based API recommendation approaches. We
choose four IDEs and five approaches published on recent

top conferences as our code-based API recommendation
baselines. A detailed description of each baseline is shown
in Table 4. For the IDEs and some of the approaches such
as TravTrans [32] and Deep3 [59], they can predict any
code tokens besides API tokens. In this paper, we focus
on evaluating their performance in recommending APIs.
Following prior research [19], [24], [32], [49], [60], we use the
training set of APIBENCH-C to train each of the approaches
in academia for a fair comparison.

PAM [19] is the only context-intensive approach, pri-
marily designed for intra-project API pattern mining. In
this paper, we also extend the approach to cross-project
recommendation by selecting the best API from projects in
the training set for each test case. The extended version of
PAM is named as PAM-MAX, which indicates the theoreti-
cal maximum performance the context-insensitive approach
can achieve.

Evaluation metrics. Since both query-based and code-
based API recommendation baselines output a ranked list
of candidate APIs, we adopt the commonly-used metrics
in recommendation tasks for evaluation. The Mean Recip-
rocal Rank (MRR), Mean Average Precision (MAP), and
Normalized Discounted Cumulative Gain (NDCG) metrics
are widely adopted by previous API recommendation stud-
ies [27]. In this study, we also involve a new metric Success
Rate. The Success Rate@k is defined to evaluate the ability
of an approach in recommending correct APIs based on the
top-k returned results regardless of the orders. To determine
the relevance score in NDCG calculation, we use a relevance
score of 1 if an approach hits the correct API class, and
a relevance score of 2 if the correct API method is hit.
Therefore, we can align the performance of class-level and
method-level approaches.

4 EMPIRICAL RESULTS OF QUERY REFORMULA-
TION AND QUERY BASED API RECOMMENDATION

In this section, we study the RQ 1-3 discussed in Sec. 1 and
provide the potential findings concluded from the empirical
experiments. Since currently no query-based API recom-
mendation approach is specially designed for Python APIs,
we focus on studying query-based API recommendation
approaches for Java.

4.1 Effectiveness of Query-Based API Recommenda-
tion Approaches (RQ1-1)

To answer RQ1, we evaluate the six query-based API recom-
mendation baselines listed in Table 3 by using the original
queries in our benchmark APIBENCH-Q. The evaluation
results are illustrated in Table 5.

Class-level v.s. Method-level. Regarding the class-level
recommendation, as shown in Table 5, we can find that
BIKER achieves the highest Success Rate, e.g., 0.67 for
Success Rate@10, indicating that BIKER is more effective in
finding the correct API class in the top-10 returned results
for 60%∼70% of cases. Unsurprisingly, the naive baseline
shows the worst performance for all the metrics. Even
so, the naive baseline can successfully predict the correct
API class for around 20% of cases. However, with respect
to the method-level recommendation, all the approaches

9

TABLE 5
The basic performance of query-based API recommendation baselines without applying any query reformulation techniques at different metrics

(Top-1,3,5,10). Note that we define NDCG as a uniform metric to evaluate class level and method level together, so the NDCG scores listed in two
levels have the same values. The red numbers indicate the best performance achieved in top-10 results.

Baseline Level
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

RACK Class 0.17 0.30 0.35 0.41 0.17 0.23 0.24 0.24 0.25 0.17 0.24 0.26 0.28

KG-APISumm Class 0.19 0.33 0.40 0.50 0.19 0.25 0.26 0.27 0.28 0.19 0.24 0.27 0.31

Naive Baseline
Class 0.07 0.13 0.16 0.21 0.07 0.10 0.10 0.10 0.11 0.07 0.09 0.10 0.13
Method 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.03 0.03 0.07 0.09 0.10 0.13

DeepAPI
Class 0.19 0.27 0.29 0.30 0.19 0.22 0.23 0.23 0.23 0.17 0.22 0.23 0.24
Method 0.05 0.09 0.10 0.11 0.05 0.07 0.07 0.07 0.07 0.17 0.22 0.23 0.24

Lucene
Class 0.15 0.21 0.24 0.29 0.15 0.17 0.18 0.17 0.19 0.12 0.15 0.16 0.20
Method 0.04 0.08 0.10 0.14 0.04 0.06 0.06 0.06 0.07 0.12 0.15 0.16 0.20

BIKER
Class 0.33 0.51 0.59 0.67 0.33 0.41 0.41 0.39 0.44 0.27 0.32 0.35 0.42
Method 0.12 0.23 0.29 0.37 0.12 0.16 0.18 0.18 0.19 0.27 0.32 0.35 0.42

show obvious declines. For example, the Success Rate@10
of BIKER is only 0.37, decreasing by 44.8% compared to
the class-level recommendation. The Success Rates@10 of
DeepAPI and Lucene are only around 0.10, which is far
from the requirement of practical development. On average,
the approaches fail to give the exact methods for 57.8%
APIs that they give the correct classes in top-10 returned
recommendations. Thus, recommending method-level APIs
still remains a great challenge.

Finding 1: Existing approaches fail to predict 57.8% method-
level APIs that could be successfully predicted at the class level.
The performance achieved by the approaches is far from the
requirement of practical usage. Accurately recommending the
method-level APIs still remains a great challenge.

Retrieval-based methods v.s. Learning-based methods.
By comparing learning-based methods, such as DeepAPI
and naive baseline, with the other retrieval-based methods,
we can observe that learning-based methods achieve rel-
atively lower performance regarding the Success Rate@10
metric. For example, on average, retrieval-based methods
can accurately predict 46.8% class-level and 25.5% method-
level APIs among all the cases in the top-10 returned re-
sults, respectively, while learning-based methods can only
successfully recommend 25.5% class-level and 8% method-
level APIs. A possible reason may be the insufficient training
data for the learning-based methods in this task domain.
Since there are more than 30,000 APIs from the official doc-
umentation, learning-based methods require a large number
of query-API pairs for training. However, even the largest
Q&A forum, Stack Overflow, contains only about 150,000
posts after our pre-processing, which is not enough for
model training.

Finding 2: Learning-based methods do not necessarily out-
perform retrieval-based methods in recommending more correct
APIs. The insufficient query-API pairs for training limit the
performance of learning-based methods.

Performance in API ranking. From Table 5, we find

that there exist obvious gaps between the scores of Success
Rate@k and the metrics for evaluating API ranking, such
as MAP@k and NDCG@k. For example, RACK achieves
Success Rate@10 score at 0.41, but its MAP@10 score is only
0.24. This indicates that although the approaches are able
to find the correct APIs, they cannot well rank them ahead
in the returned results. The low MRR scores, e.g., 0.11 ∼
0.44 for class-level API recommendation and 0.03 ∼ 0.19
for method-level API recommendation, and NDCG scores
also show the poor ranking performance of the approaches.
The results manifest that API ranking is still challenging for
current approaches.

Finding 3: Current approaches cannot rank the correct APIs
well, considering the huge gap between the scores of Success
Rate and the other ranking metrics.

To sum up, accurately recommending method-level APIs
and ranking candidate APIs still remain great challenges.
Besides, the insufficient data for training hinder the perfor-
mance of current learning-based approaches.

4.2 Effectiveness of Query Reformulation Techniques
(RQ2)
Original queries can be short in length or contain vague
terms. Query reformulation aims at changing original
queries for facilitating downstream tasks. In this RQ, we ex-
plore the impact of query reformulation on the performance
of query-based API recommendation.

We implement the four query reformulation techniques,
as listed in Table 3, for the original queries. We name the
queries reformulated by query expansion techniques and
query modification techniques as expanded queries and
modified queries, respectively. For each original query, we
conduct the reformulation 10 times, producing 10 expanded
or modified queries, with the statistics shown in Table 1.
Note that NLPAUG [40] is a comprehensive data augmenta-
tion library for general NLP tasks. We choose the popular
word-level insertion and substitution methods designed
for manipulating single sentences based on five models,
including BERTOverflow [35], Google News Word2vec [21],

10

Stack Overflow Word2vec [68], WordNet [44], and Random
model, in the library to generate expanded and modified
queries.

The queries output by the query reformulation tech-
niques are not ranked in order, and may impact the down-
stream API recommendation performance variously. To ex-
plore the maximum potential effect brought by query refor-
mulation techniques, we evaluate the API recommendation
approaches on each reformulated query and choose the best
result for analysis. We choose the maximum improvement
instead of average improvement for analysis based on the
following considerations: 1) It is hard to provide a fair
comparison between query reformulation approaches that
rank the processed queries such as SEQUER and query
reformulation approaches that do not rank the processed
queries such as NLPAUG. 2) Query modification would
change the query semantics [8], [37]; therefore, using av-
erage improvement tends to involve wrong queries and
bias the evaluation results. 3) Our goal is to show the
potential of current query reformulation approaches, and
motivate future research on query reformulation to enhance
the performance of API recommendation.

We study the impact of query reformulation on API
recommendation from the following two aspects:

1) whether query reformulation techniques can help
predict more correct APIs;

2) whether query reformulation can improve the API
ranking performance.

4.2.1 Influence on predicting more correct APIs
With query reformulation v.s. Without query reformu-
lation. The Success Rate metric reflects the proportion of
the APIs an approach can correctly predict. The results of
implementing the reformulation techniques on API recom-
mendation approaches are illustrated in Figure 4 (class-
level) and Figure 5 (method-level). From the figures, we
observe that query reformulation can increase the perfor-
mance of API recommendation in most cases. Only for a
few cases, the performance drops, which can be attributed
to the inefficiency of some query reformulation techniques.
For example, NLPAUG (WordNet) and NLPAUG (Random)
tend to poorly modify the original queries for recommenda-
tion, as shown in Figure 4 (b) and Figure 5 (b). Overall, on
average the process improves the class-level and method-
level recommendation by 0.11 and 0.08, which is a corre-
sponding boost of 27.7% and 49.2% compared with the basic
performance on original queries.

Finding 4: Query reformulation techniques are quite effective
in helping query-based API recommendation approaches give
the correct API by adding an average boost of 27.7% and 49.2%
on class-level and method-level recommendations, respectively.

Query expansion v.s. Query modification. By com-
paring the class-level and method-level recommendation
results of query expansion and query modification in Fig-
ure 4 and Figure 5, respectively, we observe that all the
query expansion techniques improve the API recommen-
dation performance, but not all the query modification tech-
niques benefit the recommendation. For example, NLPAUG
(WordNet) and NLPAUG (Random) generally decrease the

performance of current approaches both in class-level and
method-level recommendations. This indicates that query
expansion techniques bring more stable improvement than
query modification techniques. Furthermore, on average,
query expansion techniques improve the performance by
0.13 and 0.10 on class-level and method-level recommenda-
tion, which is much higher than the improvement of 0.09
and 0.06 achieved by query modification techniques. This
also suggests that query expansion techniques are more
effective than query modification techniques.

Finding 5: Query expansion is more stable and effective to
help current query-based API recommendation approaches give
correct APIs than query modification.

Comparing different query expansion techniques. As
shown in Figure 4 (a) and Figure 5 (b), NLP2API and
NLPAUG (BERT) present the largest improvement on the
performance of query-based API approaches at both class
level and method level. For analyzing the improvement, we
use two examples to illustrate the query expansion results
of NLP2API and NLPAUG (BERT), respectively. In both
examples, the most effective approach BIKER fails to predict
the API based on the original queries but succeeds given the
reformulated queries.

Example 1: Query Expansion
TECHNIQUE NLP2API
ORIGINAL QUERY Returns a new Document instance
PROCESSED QUERY DocumentBuilderFactory Returns a new

Document instance

In the first example, NLP2API expands the query by
adding a predicted API class DocumentBuilderFactory that
is related to the original query. With such an explicit hint,
the recommendation approach can narrow down the search
scope and pinpoint the requested API method.

Example 2: Query Expansion
TECHNIQUE NLPAUG (BERT)
ORIGINAL QUERY Java reverse string
PROCESSED QUERY java reverse character string

In the second example, the query is looking for the API
java.lang.StringBuilder.reverse(), whose description in official
documentation is “Causes this character sequence to be replaced
by the reverse of the sequence”. NLPAUG (BERT) adds a rel-
evant word character to enrich the semantics of the original
query.

Example 3: Query Expansion
TECHNIQUE NLPAUG (W2V-SO)
ORIGINAL QUERY Convert from Radians to Degrees in Java
PROCESSED QUERY Convert from AV Radians to Degrees in

Long Java

Comparing NLPAUG (W2V) with NLPAUG (BERT) and
NLP2API in Figure 4 and Figure 5, we find that the NL-
PAUG (W2V) is much less effective. To obtain a possible
reason for such a difference, we give the third example
below. As shown in this example, we find that NLPAUG

11

RACK KG-APISumm Naive Baseline DeepAPI Lucene BIKER
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
pr

ov
em

en
t o

f S
uc

ce
ss

 R
at

e@
10

SEQUER Google NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News) NLP2API

(a) Query Expansion

RACK KG-APISumm DeepAPI Lucene Naive Baseline BIKER

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Im
pr

ov
em

en
t o

f S
uc

ce
ss

 R
at

e@
10

NLPAUG (WordNet) NLPAUG (Random) NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News)

(b) Query Modification

Fig. 4. The maximum improvement of Success Rate@10 by all query reformulation techniques on class-level query-based API recommendation
baselines. We do not evaluate the performance of RACK and KG-APISumm in NLP2API reformulated queries as they are only class-level
recommendation approaches while NLP2API directly give the predicted API classes. Note that we include Google Prediction Service and SEQUER
as expansion techniques here because they expand the queries in most cases.

(W2V) adds two irrelevant words into the original query,
which negatively impacts the prediction results of BIKER.
This also indicates that contextual embeddings such as
BERT are more effective than traditional word embeddings.

Finding 6: In query expansion, adding predicted API class
names or relevant words to queries are more useful than adding
other tokens.

Comparing different query modification techniques.
Among all query modification techniques, NLPAUG (BERT)
presents the biggest improvement on all the baselines at
both class level and method level. Example 4 illustrates how
NLPAUG (BERT) modifies words in the original query. In
the example, the original query asks about ways to calculate
the time difference between two dates and the correct API
is java.time.Period.between(). The description of the API in its
official documentation is “obtains a period consisting of the
number of years, months, and days between two dates”. How-
ever, the word “difference” used in the original query does
not clearly describe the functional request. NLPAUG (BERT)
modifies the word into “months” which exactly appears
in the official description. Based on the modifications, the
correct API is recommended.

From the second and fourth examples above, we find

Example 4: Query Modification
TECHNIQUE NLPAUG (BERT)
ORIGINAL QUERY How do I calculate difference between two

dates
PROCESSED QUERY how do they I calculate months difference

between two dates

that BERT-based models show great performance on both
query expansion and query modification to help improve
the performance of current query-based API recommenda-
tion approaches. This indicates that even though the current
data source limits the performance of these models to di-
rectly predict the correct APIs, they can be used to improve
the query quality as query reformulation techniques.

Finding 7: BERT-based data augmentation shows superior
performance in query modification compared with other query
modification techniques.

4.2.2 Influence on the performance of API ranking
In this section, we analyze the impact of query reformula-
tion techniques on the performance of API ranking. Since
the ideal case is that the correct APIs rank first in the

12

Naive Baseline DeepAPI Lucene BIKER

0.00

0.05

0.10

0.15

0.20

0.25
Im

pr
ov

em
en

t o
f S

uc
ce

ss
 R

at
e@

10

SEQUER Google NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News) NLP2API

(a) Query Expansion

Naive Baseline DeepAPI Lucene BIKER

0.00

0.05

0.10

0.15

0.20

Im
pr

ov
em

en
t o

f S
uc

ce
ss

 R
at

e@
10

NLPAUG (WordNet) NLPAUG (Random) NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News)

(b) Query Modification

Fig. 5. The maximum improvement of Success Rate@10 by all query
reformulation techniques on method-level query-based API recommen-
dation baselines.

returned results, we use the metric NDCG@1 which con-
siders both class-level and method-level recommendation
performance. We compute the changes of NDCG@1 scores
for the query-based API recommendation approaches before
and after query reformulation. Besides, to focus our analysis
on the performance of API ranking instead of the overall
recommendation accuracy, the computation is performed
only on the cases that are correctly predicted with and
without query reformulation.

The results are illustrated in Figure 6. As can be seen in
Figure 6 (a), most query expansion techniques also improve
the ranking results of the query-based recommendation
approaches. Among all the query expansion techniques, SE-
QUER, NLPAUG (BERT), RACK and NLP2API can improve
the ordering performance relatively better than the others.
The biggest improvement of 0.14 (32% boost) is achieved
by NLP2API on the Lucene approach. We also find that
on average query expansion also improves MRR by 0.09
(36% boost) and 0.08 (89% boost) on class-level and method-
level recommendation, respectively, which indicates that the
correct APIs are ranked much higher based on reformulated
queries.

According to Figure 6 (b), compared with query expan-
sion techniques, query modification techniques are much
less effective in improving the API ranking performance. For
example, the average improvement of NDCG@1 brought by
query modification is 0.01 (4% boost), which is 0.06 (14%
boost) for query expansion techniques. Comparing different
data augmentation methods, we also find that WordNet
and random methods tend to negatively impact the ranking
results, leading to 24% and 14% drop in terms of NDCG@1,
respectively. The results indicate that inappropriate query
modification will reduce the ranking performance of the
query-based recommendation approaches.

Finding 8: Expanding queries or modifying queries with appro-
priate data augmentation methods can improve the ranking per-
formance of the query-based API recommendation techniques.

To sum up, query reformulation, especially query expan-
sion, can not only help current approaches recommend more
correct APIs, but also improve the ranking performance.
However, the reformulation step is generally ignored by
current studies. Future work is suggested to involve such
a step for more accurate API recommendation.

4.2.3 A special Query Modification Method: Word Deletion

In previous subsections, we compare and evaluate different
query expansion and modification techniques. They aim
at enriching the original queries by adding, replacing or
modifying some words without deleting words. In this
section, we focus on studying the impact of word deletion,
a special query modification method, on the performance
of query-based API recommendation approaches. Different
from the previous query reformulation techniques which
rely on external data sources, the word deletion method we
studied does not leverage any extra knowledge. Our goal is
to explore whether original queries contain meaningless or
noisy words. Specifically, we randomly delete some words
from the original query every time and produce ten different
modified queries for one original query.

The maximum and average Success Rate@10 scores
based on the modified queries are illustrated in Figure 7.
As can be seen, the average performance of the query-
based API recommendation approaches, denoted as the
orange bar, decreases by 0.05 (13% drop) at class level
and 0.03 (18% drop) at method level. The results are not
surprising, and indicate that most words in the original
queries are helpful for the recommendation. However, the
maximum scores, denoted as the green bar, all show that
word deletion improves the recommendation performance
with an average boost of 38% and 64% for class level and
method level, respectively. The improvement demonstrates
that the original queries contain noisy words that can bias
the recommendation results, although most of the words are
useful for recommendation.

After checking all cases, we find that word deletion is
helpful for successfully recommending APIs of 545 queries,
which maybe attributed to that some noisy words are re-
moved from the original queries. To understand what kinds
of words are noisy for the accurate recommendation of these
545 queries, we manually compare the original queries and
processed queries. We summarize three possible situations
as below:

1) 349 (64%) queries contain unnecessary or meaningless
words.

Example 5: Word Deletion
TECHNIQUE Random Deletion
ORIGINAL QUERY Standard way to iterate over a StringBuilder

in java
PROCESSED QUERY Standard way to iterate over a StringBuilder

in java

13

RACK KG-APISumm Naive Baseline DeepAPI Lucene BIKER

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Im

pr
ov

em
en

t o
f N

D
C

G
@

1

SEQUER Google NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News) NLP2API

(a) Query Expansion

RACK KG-APISumm Naive Baseline DeepAPI Lucene BIKER

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Im
pr

ov
em

en
t o

f N
D

C
G

@
1

NLPAUG (WordNet) NLPAUG (Random) NLPAUG (BERT) NLPAUG (W2V-SO) NLPAUG (W2V-News)

(b) Query Modification

Fig. 6. The maximum improvement of NDCG@1 by all query reformulation techniques on query-based API recommendation baselines under
original successful cases.

In Example 5, the phrases “Standard way to” and “in java”
are not beneficial for pinpointing the correct API. Stop word
removal also has a limited effect on eliminating these words.

2) 156 (29%) queries contain too detailed words for
explanation.

Example 6: Word Deletion
TECHNIQUE Random Deletion
ORIGINAL QUERY converts a color into a string like 255,0,0
PROCESSED QUERY converts a color into a string like 255,0,0

In Example 6, the phrase “like 255,0,0” is used to explain
the “string”. However, such phrases never appear in the
official documentation and the specific number adversely
impacts the recommendation results.

3) 34 (6%) queries contain extreme long descriptions.

Example 7: Word Deletion
TECHNIQUE Random Deletion
ORIGINAL QUERY how to add progress bar to zip utility while

zipping or extracting in java
PROCESSED QUERY how to add progress bar to zip utility

while zipping or extracting in java

Based on work [8], most queries have the lengths of
between one to seven words. In our manual analysis pro-
cess, one query is regarded as extremely long if it contains
more than 10 words. In Example 7, the words after “while”
actually describe nothing about the task. The long query
descriptions can decrease the weight of useful words in the
queries thus confusing API recommendation approaches.

Finding 9: Original queries raised by users usually con-
tain noisy words which can bias the recommendation results,
and query reformulation techniques should consider involving
noisy-word deletion for a more accurate recommendation.

4.3 Data Sources (RQ3)
In RQ1-1, we highlight that insufficient data greatly limits
the performance of current learning-based methods. In this
section, we conduct a deep analysis on the influence of
different data sources on the recommendation results. From
Table 3, we can observe that current approaches generally
leverage three different data sources: official documenta-
tion, Q&A forums, and tutorial websites. For analysis, we
choose two methods, Lucene and naive baseline, which are
flexible to incorporate different data sources. Specifically,
we evaluate the methods on the part of queries from the

14

RACK KG-APISumm Naive Baseline DeepAPI Lucene BIKER
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

uc
ce

ss
 R

at
e@

10

Original Deleted_Avg Deleted_Max

(a) Class Level

DeepAPI Lucene Naive Baseline BIKER
0.0

0.1

0.2

0.3

0.4

0.5

S
uc

ce
ss

 R
at

e@
10

Original Deleted_Avg Deleted_Max

(b) Method Level

Fig. 7. The maximum and average Success Rate@10 on all baselines
when randomly deleting some words in original queries.

Lucene
(Class Level)

Lucene
(Method Level)

NaiveBaseline
(Class Level)

NaiveBaseline
(Method Level)

0.0

0.1

0.2

0.3

0.4

S
uc

ce
ss

 R
at

e@
10

Original SO Mixed

Fig. 8. The Success Rate@10 of Lucene and Naive Baseline under
three data source settings.

tutorial websites collected in APIBENCH-Q, and the method
training is conducted based on the following knowledge
base:

1) only official documentation,
2) only Stack Overflow posts, and
3) both official documentation and Stack Overflow posts.
The experiment results are shown in Figure 8. As can

be seen, training on Stack Overflow posts achieves much
better performance than on official documentation at both
class and method levels. For example, Lucene achieves a
29% boost in class-level and an 169% boost in method-level
recommendation when searching based on Stack Overflow
than on official documentation; and the naive baseline even
achieves a 71% boost in class-level and a 602% boost in
method-level recommendation. The advantage of leverag-
ing Stack Overflow posts may be attributed that the dis-
cussion on Stack Overflow is more natural and similar to
user queries, compared with the descriptions in the official
documentation. Besides, the extended usage of some APIs
is rarely mentioned in official documentation but is widely
discussed in Stack Overflow. An example is used to illus-
trate the influence of different data sources.

In Example 8, the query asks about the API for gener-

Example 8: Data Source
BASELINE Lucene
ORIGINAL QUERY Compute the md5 hash of a File
CORRECT API java.security.MessageDigest.digest(),

java.security.MessageDigest.getInstance()
API DESCRIPTION Completes the hash computation by perform-

ing final operations such as padding
SIMILAR SO POST How can I generate an MD5 hash in Java?

ating an MD5 hash of a file. However, there is no standard
API specially designed to generate the MD5 hash, so Lucene
focuses on two words “hash” and “file” for recommen-
dation. But the official description of ground truth API
java.security.MessageDigest.digest() does not contain the word
“file” since it is a general API that not merely handles files.
Under this circumstance, Lucene recommends a more rele-
vant but wrong API java.nio.file.attribute.FileTime.hashCode().
When involving Stack overflow posts, as there already exists
discussion on how to generate the MD5 hash, Lucene can
easily pinpoint and recommend the correct API in the posts.

The advantage of leveraging Stack Overflow for rec-
ommendation is also demonstrated by the BIKER ap-
proach [27], which is the most effective approach in Sec-
tion 4.1. Our finding is consistent with the claim in the
work [27] that Stack Overflow posts can mitigate the se-
mantics gap between user queries and official descriptions.

Finding 10: Apart from official documentation, using other
data sources such as Stack Overflow can significantly im-
prove the performance of query-based API recommendation
approaches.

5 EMPIRICAL RESULTS OF CODE-BASED API
RECOMMENDATION

In this section, we study the RQ1 and RQ 4 ∼ 6 discussed
in Sec 1. To study RQ1, RQ4 and RQ5, we evaluate the
performance of all the code-based API recommendation
approaches on the “General” domain of our benchmark
APIBENCH-C, as shown in Table 2, since the “General”
domain includes code with different topics and can reflect
the overall performance of baselines. For studying the abil-
ity of cross-domain adaptation in RQ6, we evaluate the
performance of the approaches on all the five domains of
our APIBENCH-C.

5.1 Effectiveness of Existing Approaches (RQ1-2)

According to Table 4, three approaches for Python and three
approaches for Java are evaluated on the “General” domain
of APIBENCH-C. The results are depicted in Table 6. We can
observe that the learning-based method TravTrans obtains
the best performance on the Python dataset, achieving 0.62
and 0.54 for Success Rate@10 and NDCG@10, respectively.
The results mean that TravTrans can successfully recom-
mend 62% of APIs in our benchmark and well predict the
API rankings. However, the traditional statistical method
Deep3 only achieves 0.43 and 0.32 for Success Rate@10 and
NDCG@10, respectively, while the pattern-based method
FOCUS and PAM achieve less than 0.10 for both Success

15

TABLE 6
The performance of code-based API recommendation baselines at different metrics (Top-1,3,5,10). All baselines are trained and tested on the full
dataset from “General” domain of APIBENCH-C except for PyART. Since PyART takes months to train and test on our full dataset, we randomly

sampled 20% of original training and testing testset to evaluate it. The “PL” column indicates the programming language the baselines target. The
red number indicates the best performance.

PL Baseline
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Python
TravTrans 0.45 0.57 0.59 0.62 0.45 0.50 0.51 0.51 0.51 0.45 0.52 0.53 0.54

Deep3 0.21 0.34 0.37 0.43 0.20 0.27 0.28 0.28 0.28 0.21 0.29 0.30 0.32

PyART 0.29 0.38 0.46 0.60 0.29 0.33 0.35 0.37 0.37 0.29 0.34 0.37 0.41

Java
FOCUS 0.01 0.03 0.04 0.06 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.04

PAM 0.01 0.02 0.03 0.05 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.03

PAM-MAX 0.22 0.32 0.36 0.45 0.22 0.26 0.27 0.28 0.28 0.22 0.27 0.29 0.32

TABLE 7
The performance of code-based API recommendation baselines along with 4 widely used IDEs tested on 500 cases sampled from the testset of all

domains in APIBENCH-C. The “PL” column indicates the programming language the baselines target. The red number indicates the best
performance. The rows with gray background indicates the performance of IDEs.

PL Baseline
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Python

TravTrans 0.38 0.46 0.48 0.50 0.38 0.42 0.42 0.43 0.43 0.38 0.43 0.44 0.44

Deep3 0.19 0.26 0.31 0.38 0.19 0.22 0.23 0.24 0.24 0.19 0.23 0.25 0.28

PyCharm 0.31 0.42 0.47 0.49 0.31 0.36 0.37 0.37 0.37 0.31 0.38 0.40 0.40

VSCode 0.05 0.15 0.21 0.35 0.05 0.09 0.11 0.13 0.13 0.05 0.11 0.14 0.18

Java

FOCUS 0.02 0.04 0.05 0.07 0.02 0.03 0.03 0.04 0.04 0.02 0.03 0.04 0.04

PAM 0.01 0.02 0.05 0.07 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.04

PAM-MAX 0.27 0.38 0.43 0.56 0.27 0.31 0.33 0.34 0.34 0.27 0.33 0.35 0.39

Eclipse 0.28 0.42 0.49 0.60 0.28 0.34 0.35 0.37 0.37 0.28 0.36 0.39 0.42

IntelliJ IDEA 0.42 0.58 0.65 0.67 0.42 0.49 0.51 0.51 0.51 0.42 0.51 0.54 0.55

Rate@10 and NDCG@10. This suggests that learning-based
methods obtain superior performance in code-based API
recommendation, which is quite different from query-based
API recommendation. The possible reason is that lots of
well-organized public code repositories provide sufficient
data for training code-based API recommendation models.

We also find that FOCUS and PAM show low recom-
mendation accuracy, with all the metric values lower than
0.1. The low performance is attributed to the context rep-
resentation of the approaches. PAM is a context-insensitive
approach, which only mines the top-N APIs that are most
likely to be used in the training set and directly recommends
them for each file in the test set; while FOCUS takes one
step further by extracting the APIs in the test set and
building a matrix to match the APIs in the training set. Such
coarse-grained context representation or context-insensitive
representation does not well capture the relations between
APIs. PAM-MAX shows the theoretical best performance
context-insensitive methods can achieve. However, the per-
formance of PAM-MAX is still lower than that of TravTrans
and PyART which consider fine-grained code features such
as code tokens and data flows. The results indicate the
effectiveness of fine-grained approaches for code-based API
recommendation.

Besides the recent code-based API recommendation ap-
proaches, we also compare the widely-used IDEs. Since it
is hard to automatically evaluate IDEs’ recommendation
performance, we sampled 500 APIs from the original large
test set of APIBENCH-C based on the distribution shown in
Table 2. We then conduct a manual evaluation by imitating
the behaviors of developers on the 500 sampled APIs. We
show the results on the sampled test set in Table 7. As can
be seen, for Python, Pycharm achieves the Success rate@10
at 0.49 and NDCG@10 at 0.40, which is truly competitive
to the performance of TravTrans, with Success Rate@10 and
NDCG@10 at 0.50 and 0.44, respectively. For Java, IDEs also
show competitive performance compared with the baseline
approaches. The results demonstrate that the widely-used
IDEs are generally effective in API recommendation and far
from relying on alphabet orders for recommendation.

Finding 11: DL models such as TravTrans show superior
performance on code-based API recommendation by achieving
a Success Rate@10 of 0.62, while widely-used IDEs also obtain
satisfying performance by achieving a Success Rate@10 of 0.5
∼ 0.6.

16

TravTrans Deep3 FOCUS PAM PAM-MAX
0.0

0.2

0.4

0.6

0.8
S

uc
ce

ss
 R

at
e@

10

Standard Popular User-defined

Fig. 9. The Success Rate@10 of baselines on three categories of APIs
at the “General” domain of APIBENCH-C.

5.2 Capability to Recommend Different Kinds of APIs
(RQ4)

Exploring which kinds of APIs tend to be wrongly predicted
is essential for understanding the bottleneck of current ap-
proaches and for providing clues for further improvement.
In Section 3, we have classified all APIs into standard APIs,
popular third-party APIs and user-defined APIs. In this RQ,
we study the performance of current baselines for different
kinds of APIs. Specifically, we evaluate TravTrans, Deep3,
FOCUS, PAM and PAM-MAX on the full test set of the
“General” domain, with results shown in Figure 9.

As can be seen in Figure 9, most approaches achieve a
very high Success Rate@10 on standard APIs. For example,
TravTrans even successfully recommends more than 90% of
standard APIs in the test set. The approaches also present
relatively good performance for the popular third-party
libraries, e.g., TravTrans achieves a Success Rate@10 of more
than 0.8. As standard APIs and popular APIs from third-
party libraries are widely used in real-world projects, data-
driven methods can achieve superior performance. How-
ever, it is hard for the approaches to correctly recommend
the user-defined APIs as they fail to predict 35.3% ∼ 91.3%
more of user-defined APIs comparing to the prediction of
standard APIs.

Finding 12: Although current approaches achieve good per-
formance on recommending standard and popular third-party
libraries, they face the challenges of correctly predicting the user-
defined APIs.

5.3 Capability to Handle Different Contexts (RQ5)

As context representation is an important part of the current
code-based API recommendation shown in Figure 2, it is
worthwhile to study the impact of different contexts on the
performance of current approaches. In this RQ, we explore
the impact of the following two different types of context.

• lengths of functions, which evaluates the capability
of current approaches to handle different lengths of
contexts;

• different recommendation points, since different rec-
ommendation points affect how much context an
approach can be aware of before recommendation.

Capability to handle different lengths of functions. In
Section 3 and Table 2 we classify all functions of APIBENCH-
C into extremely short functions, functions of moderate
lengths, or extremely long functions by sampling the first
5%, middle 90% and last 5% according to the distribution

TravTrans Deep3 FOCUS PAM PAM-MAX
0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
uc

ce
ss

 R
at

e@
10

Moderate Long Short

Fig. 10. The Success Rate@10 of baselines on extremely short, normal
and extremely long contexts at the “General” domain of APIBENCH-C.

of function lengths. As code-based API recommendation
is often based on the context in a function, the length of
function can represent the length of context that an approach
needs to handle. We study the performance of current
baselines on functions of different lengths and show the
results of TravTrans, Deep3, FOCUS, PAM, and PAM-MAX
in Figure 10.

From Figure 10, we find that most baselines share similar
performance distributions on functions of different lengths.
They present the best performance on functions with moder-
ate lengths and suffer from performance drops on extremely
long or short functions. To be more specific, the performance
drops by 7.1% for extremely long functions and 10.6% for
extremely short functions on average. The results indicate
that context length can affect the performance of current
approaches. Besides, the approaches are more difficult to
recommend correct APIs for the functions of extremely short
lengths than those of extremely long lengths.

Finding 13: Context length can impact the performance of
current approaches in API recommendation. The approaches
perform poorly for the functions with extremely short or long
lengths, and accurate recommendation for the extremely short
functions is more challenging.

Capability to handle different recommendation points.
Similar to the previous work [49], we first define three
locations of recommendation points. Suppose that the LOC
of a function is n and the total number of APIs used in the
function is m. we define a recommendation point that is on
the ath line of the function and is the bth API in the function
locates on

1) the front of function if a/n < 1/4 and b/m < 1/4, or
2) the middle of function if 1/4 < a/n < 3/4 and 1/4 <

b/m < 3/4, or
3) the back of function if a/n > 3/4 and b/m > 3/4.
We show an example for illustrating front, middle and

back recommendation point in listing 1.

1 public static void main(String args[]) {
2 //first 1/4 part
3 String[] strArray =
4 new <Front Recommendation Point>
5 ...
6 //middle 1/2 part
7 List l = Arrays.<Middle Recommendation Point>
8 ...
9 //last 1/4 part

10 Collections.<Back Recommendation Point>;
11 ...
12 }

Listing 1. Example of Recommendation Points

17

TravTrans Deep3 FOCUS PAM PAM-MAX
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
uc

ce
ss

 R
at

e@
10

Front Middle Back

Fig. 11. The Success Rate@10 of baselines on three categories of
recommendation points at the general domain of APIBENCH-C.

For all the APIs in the test set of the “General” domain,
we replace them with placeholders of the above three types
of recommendation points for evaluation. We also remove
APIs in extremely long or short functions (according to the
thresholds shown in Table 2) to alleviate the influence of
function lengths. We show the results of TravTrans, Deep3,
FOCUS, PAM and PAM-MAX in Figure 11.

From Figure 11, we observe that current approaches gen-
erally perform worse at the front recommendation points
by achieving an average Success Rate@10 of 0.316. This
is intuitive since there exists less information for current
approaches to leverage at front recommendation points.
However, it is worth noting that not all approaches achieve
the best performance at the back recommendation point
which is associated with the most context among all the
recommendation points. The reason may be that the ap-
proaches cannot well handle the overwhelming information
in long contexts.

Finding 14: The location of recommendation points can affect
the performance of current approaches. Current approaches
perform worst at front recommendation points due to limited
contexts. Some of them also suffer from overwhelming contexts
at back recommendation point.

To sum up, different contexts can affect the performance
of current code-based API recommendation approaches.
Among them, the extremely short contexts and front recom-
mendation points bring the most challenges for the accurate
recommendation.

5.4 Adaptation to Cross-Domain Projects (RQ6)
We have divided APIBENCH-C into five different domains
in Section 3. In this section, we aim at studying the adaption
capability of current approaches for cross-domain projects.
We train the approaches in one domain and evaluate them
in other different domains. We choose the approaches
TravTrans, Deep3, and PyART, which are all designed for
Python, for analysis. We do not involve the approaches
FOCUS, PAM, or PAM-MAX, since they use coarse-grained
context representations or context-insensitive feature, and
are difficult to incorporate project-specific information. The
first four rows of Table 8 list the cross-domain Success
Rate@10 of TravTrans, Deep3 and PyART, respectively.

According to Table 8, the approaches trained on one
domain generally perform best on the test set of the same
domain. For example, when trained on data from the “Se-
curity” domain, TravTrans, Deep3 and PyART obtain the
best scores at 0.54, 0.51 and 0.48 on the test set of the

same domain, respectively, in terms of Success Rate@10.
However, their performance drops by 2.1% ∼ 43.1% when
recommending APIs from different domains.

Finding 15: Current approaches using fine-grained context
representation are sensitive to the domain of the training data
and suffer from performance drop when recommending cross-
domain APIs.

We also analyze the cross-domain performance of the
approaches when training on multiple domains instead
of on one single domain. Such analysis is worthwhile to
explore whether different domains can complement each
other. Then we train the approaches on the projects from
the “General” domain of APIBENCH-C and evaluate them
on the other four different domains. We show the results in
the last row of table 8.

From the table, we can see that the approaches trained on
the “General” domain generally show the best performance
when evaluating on different domains. For example, Trav-
Trans trained on the “General” domain achieves the Success
Rate@10 of 0.72, 0.76, 0.78 and 0.74 on ML, Security, Web and
DL domains, respectively, which is significantly higher than
the corresponding best scores obtained by TravTrans trained
on single one domain. We observe an average boost of 14%
for the performance of the approaches when trained on
multiple domains than on a single domain. The results in-
dicate that training approaches on multiple domains greatly
improve the recommendation performance.

Finding 16: Training on multiple domains helps the current
approaches to recommend APIs in different single domains, and
the performance is generally better than only training on a
single domain.

6 DISCUSSION AND FUTURE WORK

6.1 Query Reformulation for Query-based API Recom-
mendation

In Section 4.2, we find that query reformulation techniques
can not only help current query-based API recommendation
approaches find more correct APIs but also improve the
ranking performance. Based on query reformulation, BIKER
can even achieve a Success Rate@10 of 0.80 in class-level
and 0.51 in method-level API recommendation. The results
demonstrate that query quality has a great impact on the
recommendation results and suggest that query reformu-
lation should become a common pre-processing technique
used before query-based API recommendation. We also
discover that some query reformulation techniques, such as
adding predicted API class names or relevant words, can
improve the performance of query-based API recommenda-
tion approaches. However, to the best of our knowledge,
few studies have considered integrating these techniques,
which could be one major reason that current approaches
achieve limited performance.

By implementing a random deletion strategy, in Sec-
tion 4.2.3 we find that user queries usually contain noisy
words, which can bias the recommendation results. We
summarize three kinds of cases in which a query contains
noisy words. However, there exists very little work that

18

TABLE 8
The cross-domain Success Rate@10 of Python code-based API recommendation baselines. The rows list the domains where three baselines are

trained and the columns list the domains where three baselines are evaluated. The red number indicates the best performance an approach
achieves when trained on one domain (The largest number in each row). The numbers with gray background indicates the best performance

achieved on a specific testing domain (The largest number in each column).

Training Domain
TravTrans Deep3 PyART

ML Security Web DL ML Security Web DL ML Security Web DL

ML 0.64 0.58 0.53 0.71 0.42 0.41 0.36 0.48 0.39 0.35 0.40 0.40

Security 0.40 0.54 0.54 0.39 0.31 0.51 0.42 0.29 0.36 0.48 0.47 0.36

Web 0.54 0.63 0.64 0.51 0.33 0.42 0.46 0.31 0.42 0.47 0.50 0.40

DL 0.66 0.58 0.50 0.68 0.44 0.39 0.33 0.44 0.43 0.36 0.38 0.45

General 0.72 0.76 0.78 0.74 0.55 0.65 0.62 0.57 0.44 0.44 0.46 0.46

aims to detect and eliminate the irrelevant words for rec-
ommendation systems, which poses a great challenge for
current approaches to be robust when handling various user
queries. Although a random deletion strategy reduces the
overall performance on average, the positive improvement
of deletion on some specific words indicates the potential
benefits of noisy word deletion.

Implication 1: Current query-based API recommendation
approaches should be integrated with query reformulation
techniques to be more effective.

6.2 Data Sources for Query-based API Recommenda-
tion

In Section 4.1, we point out that current query-based API
recommendation approaches face the problem of building a
comprehensive knowledge base due to the lack of enough
data such as query-API pairs. In Section 4.3, we further
discover that there is a semantic gap between user queries
and descriptions from the official documentation. Both the
lack of enough data for knowledge base creation and the
semantic gap increase the difficulty of accurate API rec-
ommendation based on only official documentation. Such
challenges can not be easily solved by improving learning-
based models or pattern-based models. One effective way
to mitigate the difficulty is to involve Stack Overflow posts,
as analyzed in Section 4.3. While Stack Overflow is only one
type of data source, our analysis demonstrates that adding
appropriate data sources can improve the performance of
query-based API recommendation approaches.

Implication 2: Apart from query reformulation, adding
appropriate data sources provides another solution to bridge
the gap between queries and APIs.

6.3 Low Resource Setting in Query-based API Recom-
mendation

In Section 4.1, we find that current learning-based methods
do not necessarily outperform traditional retrieval-based
methods. We attribute the results to the limited data such

as query-API pairs in the query-based API recommenda-
tion task, which is a low-resource scenario [10], [25]. We
also discover that pre-trained models such as BERT show
superior performance in query reformulation in Section 4.2.
This indicates that current pre-trained models can implicitly
mitigate the semantic gap between user queries and official
descriptions of APIs. Future work is suggested to explore
how to make the best use of pre-trained models for query-
based API recommendation based on limited available data.

Implication 3: Few-shot learning with powerful pre-trained
models can be a solution to further improve the performance
of query-based API recommendation.

6.4 User-defined APIs
In Section 5.2, we find that current code-based API recom-
mendation approaches, no matter pattern-based or learning-
based models, all face the challenge of recommending user-
defined APIs. User-defined APIs have become the major
bottleneck to further improve the performance of current
code-based API recommendation approaches. However, as
user-defined APIs usually do not appear in the training set,
they can hardly be learned by machine learning methods
or be mined by pattern-based methods. A possible solution
used by current approaches [27], [33] is to regard the API
as a code token and predict the token based on previous
contexts. However, this solution also fails if the API token
never appears in previous context. Thus, accurately pre-
dicting user-defined APIs should be one major direction of
code-based API recommendation in future work.

Implication 4: User-defined API recommendation is one
major bottleneck for improving the performance of current
code-based API recommendation approaches and remains
unsolved.

6.5 Query-based API Recommendation with Usage Pat-
terns
In this paper, we only focus on testing whether an approach
can recommend the correct APIs, but we believe developers
can always benefit more from detailed information about

19

how to use the recommended APIs. A common method is
to provide summaries such as the signature and constraints
extracted from official documentation along with the rec-
ommended APIs. For example, KG-APISumm proposed
by Liu et al. [38] provides a detailed summary of the
recommended API class. However, official documentation
sometimes cannot provide enough usage information about
an API, which may cause API misuse. For instance, a fresh
developer may search “how to read a file” in Python and the
recommended API should be fileObject.read(), but without
sufficient experience to use file operations, the developers
may forget to close the file after reading it.

A possible solution to complement official documenta-
tion and avoid possible API misuse is to provide usage pat-
terns from other developers. In the above example, a com-
mon usage pattern open(), fileObject.read(), fileObject.close()
can prevent dangerous file operations. As there exist some
pattern mining approaches on code, we can combine query-
based API recommendation with code-based pattern mining
methods for better providing the usage pattern.

Implication 5: Code-based API recommendation approaches
can provide usage patterns to enrich the results returned by
query-based API recommendation approaches.

6.6 Implications for Different Group of Software Practi-
tioners

In this subsection, we conclude some implications for differ-
ent group of software practitioners.

Software Researchers. For query-based API recommen-
dation, we conclude that query reformulation techniques
can bring significant improvement for current API recom-
mendation approaches in Section 4.2. Despite of the effec-
tiveness of query reformulation, it still remains unexplored
on the factors that impact the performance of the tech-
nique. We believe a comprehensive study towards query
reformulation can be an important future direction for API
recommendation. For code-based API recommendation, we
find that the major bottleneck for current approaches is user-
defined API recommendation in Section 5.2. We suggest
software researchers to focus more on the user-defined API
recommendation for improving the practicability of API
recommendation approaches.

Software Developers. As illustrated in Section 4.3, there
exists a knowledge gap between official documentation and
user queries, which limits the performance of current query-
based API recommendation approaches. For developers
who design new APIs, we believe adding more practical
examples in the documentation or using more natural lan-
guage descriptions would mitigate the knowledge gap. In
Section 4.2.3, we find that current queries sometimes contain
unnecessary information that confuse the API recommenda-
tion approaches. For developers who search for APIs, we
believe that creating a query by using more professional
words instead of unnecessary long descriptions can facilitate
the search process.

7 THREAT TO VALIDITY

In this section, we describe the possible threats we may face
in this study and discuss how we mitigate them.

7.1 Internal Validity

Our research may face the following internal threats:
Baseline Re-implementation. In this paper, we re-

implemented several baselines according to the code or
replication packages released by their authors. However, as
some baselines are not primarily designed for API recom-
mendation, we slightly modified their code and adapted
them into our task and our benchmark. For example, we
limit the prediction scope of code completion baselines to
only API tokens. Such adaptations may cause the perfor-
mance of baselines to be slightly different from those in
the original papers. To mitigate this threat and validate
the correctness of our re-implementation, we refer to some
related work that cites these baselines and confirm our
experiment results with them.

Data Quality. We build APIBENCH-Q by manually se-
lecting and labeling API-related queries from Stack Over-
flow and some tutorial websites. This process involved
some human checks so that some subjective factors may
influence the quality of our datasets. To mitigate this threat,
we involve at least two persons to label one case and let one
of our authors further check if the previous two persons
give different opinions to the case. We also implement some
rules to automatically filter out the cases that are explicitly
unrelated to API recommendation.

Identification of User-defined APIs. We utilize
commonly-used static import analysis to analyze the import
statements in each source file and try to identify the imple-
mentation of imported libraries. To guarantee the quality of
our benchmark dataset, we regard an API as a user-defined
API only if we can find its implementation. However, since
the completeness of static import analysis is still an open
challenge, there may exist several user-defined APIs that
cannot be identified. We will further refine the dataset when
more advanced static important analysis tools are available.

7.2 External Validity

Our research may face the following external threats:
Data Selection. To the best of our knowledge,

APIBENCH is the largest benchmark in API recommenda-
tion task. We try to make it more representative by selecting
real-world code repositories from the most popular domains
at GitHub and real-world queries from the largest Q&A
forum StackOverflow according to several developer sur-
veys [28], [66]. All findings in this empirical study are based
on this dataset. However, there may still be slight differences
when adapting our findings into other domains and datasets
that we do not discuss in this paper.

Programming Language. Our study focuses on the API
recommendation on Python and Java, and the findings
included in this study may not be generalized to other
programming languages. However, we believe the impacts
of programming languages should not be significant as
Python and Java are the most representative dynamically
typed and statically typed languages, respectively.

20

8 CONCLUSION AND FUTURE WORK

In this paper, we present an empirical study on the API
recommendation task. We classify current work into query-
based and code-based API recommendation, and build a
benchmark named APIBENCH to align the performance of
different recommendation approaches. We conclude some
findings based on the empirical results of current ap-
proaches.

For query-based API recommendation approaches, we
find that 1) recommending method-level APIs is still chal-
lenging; 2) query reformulation techniques have great po-
tential to improve the quality of user queries thus they can
help current approaches better recommend APIs. What’s
more, user queries also contain some meaningless and ver-
bose words and even a simple word deletion method can
improve the performance; 3) approaches built upon differ-
ent data sources have quite different performances. Q&A
forums such as Stack Overflow can greatly help mitigate the
gap between user queries and API descriptions.

For code-based API recommendation, we emphasize
the superior performance of current deep learning models
such as Transformer. However, they still face the challenge
of recommending user-defined APIs. We also find differ-
ent contexts, such as different location of recommendation
points and context length, can impact the performance of
current approaches. Besides, current approaches suffer from
recommending cross-domain APIs.

Based on the findings, we summarize some future direc-
tions on improving the performance of API recommenda-
tion. For query-based approaches, we encourage researchers
to integrate query reformulation techniques with query-
based API recommendation approaches to obtain better per-
formance, but how to choose the best query reformulation
strategy still remains as future work. We also believe some
few-shot learning methods and different data sources can
bridge the gap between user queries and knowledge base
under low resource scenarios. For code-based approaches,
we recommend future work to focus on improving the per-
formance of user-defined API recommendation and train the
approach on multiple domains instead of a single domain.

Apart from the findings and implications concluded in
this paper, we also identify some future work that can be
conducted for API recommendation. First, our paper focuses
on benchmarking and provides an objective evaluation for
all approaches. However, some approaches provide sum-
maries for the recommended APIs that are not assessed
in our study. For such approaches, subjective evaluation
such as a developer survey can be conducted for verifying
the quality of recommended API descriptions and usage
information. Future work could consider complementing
our work. Second, our empirical results show that query
reformulation techniques are quite effective to improve the
query quality. As this paper mainly focuses on API recom-
mendation, we do not discuss different query reformula-
tion techniques comprehensively. Future work can focus on
studying the query reformulation techniques for facilitating
downstream tasks.

We released our benchmark APIBENCH and all experi-

ment results at Github3. We hope this empirical study can
remove some barriers and motivate future research on API
recommendation.

ACKNOWLEDGMENTS

This research was supported by the Research Grants Council
of the Hong Kong Special Administrative Region, China
(No. CUHK 14210920 of the General Research Fund). It
was also supported by National Natural Science Founda-
tion of China Grant under project No. 62002084, Guang-
dong Provincial Key Laboratory of Novel Security In-
telligence Technologies (2022B1212010005), Stable support
plan for colleges and universities in Shenzhen under
project No. GXWD2020 1230155427003-20200730101839009,
and the Major Key Project of PCL (Grant No. PCL2022A03,
PCL2021A02, PCL2021A09).

REFERENCES

[1] Geeks4geeks website. https://www.geeksforgeeks.org/, 2021.
[2] Java2s website. http://www.java2s.com/, 2021.
[3] Kode java website. https://kodejava.org/, 2021.
[4] Mohammad Masudur Rahman 0001 and Chanchal K. Roy. Im-

proved query reformulation for concept location using coderank
and document structures. PeerJ PrePrints, 5, 2017.

[5] AIDanial. Count lines of code. https://github.com/AlDanial/cl
oc, 2021.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code,
2019.

[7] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from
examples to improve code completion systems. In Proceedings of
the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on the foundations of software
engineering, pages 213–222, 2009.

[8] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude,
and Xiang Chen. Automated query reformulation for efficient
search based on query logs from stack overflow. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 1273–1285. IEEE, 2021.

[9] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude,
and Xiang Chen. The demo link for sequer. https://sequer-tpz
novfjxa-uc.a.run.app/?query=, 2021.

[10] Mona Diab. Data paucity and low resource scenarios: Challenges
and opportunities. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, KDD ’20,
page 3612, New York, NY, USA, 2020. Association for Computing
Machinery.

[11] Django. Django api reference. https://docs.djangoproject.com/e
n/3.2/ref/, 2021.

[12] Andrea Renika D’Souza, Di Yang, and Cristina V Lopes. Collective
intelligence for smarter api recommendations in python. In 2016
IEEE 16th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 51–60. IEEE, 2016.

[13] Stack Exchange. Stack exchange data dump. https://archive.or
g/details/stackexchange, 2021.

[14] Flask. Flask api reference. https://flask.palletsprojects.com/en/
2.0.x/api/, 2021.

[15] J. Fleiss. Measuring nominal scale agreement among many raters.
Psychological Bulletin, 76:378–382, 1971.

[16] Apache Software Foundation. Lucene. https://lucene.apache.or
g/, 2021.

[17] Eclipse Foundation. The eclipse ide. https://www.eclipse.org/ec
lipseide/, 2021.

[18] Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic
api mining across github. In Proceedings of the 2016 24th ACM SIG-
SOFT international symposium on foundations of software engineering,
pages 254–265, 2016.

3. The address of benchmark is at https://github.com/JohnnyPen
g18/APIBench

21

[19] Jaroslav M. Fowkes and Charles Sutton. Parameter-free prob-
abilistic API mining across github. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
pages 254–265. ACM, 2016.

[20] Google. Android api reference. https://developer.android.com/
reference, 2021.

[21] Google. The google news word2vec model. https://code.google.
com/archive/p/word2vec/, 2021.

[22] Google. The interface of google prediction service. http://sugges
tqueries.google.com/complete/search?, 2021.

[23] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun
Kim. Deep api learning. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 631–642, 2016.

[24] Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and
Baowen Xu. Pyart: Python api recommendation in real-time. In
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), pages 1634–1645. IEEE, 2021.

[25] Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen,
and Dietrich Klakow. A survey on recent approaches for natural
language processing in low-resource scenarios, 2021.

[26] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and
Premkumar T. Devanbu. On the naturalness of software. In 34th
International Conference on Software Engineering, ICSE 2012, June 2-9,
2012, Zurich, Switzerland, pages 837–847. IEEE Computer Society,
2012.

[27] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu
Wang. Api method recommendation without worrying about
the task-api knowledge gap. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 293–304.
IEEE, 2018.

[28] Jetbrains. Python developer survey conducted by jetbrains and
python software foundation. https://www.jetbrains.com/lp/pyt
hon-developers-survey-2020/, 2020.

[29] JetBrains. The intellij idea ide. https://www.jetbrains.com/idea/,
2021.

[30] JetBrains. The pycharm ide. https://www.jetbrains.com/pychar
m/, 2021.

[31] Elise Jing, Kristiana Schneck, Dennis Egan, and Scott A. Waterman.
Identifying introductions in podcast episodes from automatically
generated transcripts, 2021.

[32] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code
prediction by feeding trees to transformers. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
150–162. IEEE, 2021.

[33] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. The
replication package of travtrans. https://github.com/facebookr
esearch/code-prediction-transformer, 2021.

[34] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A
systematic review of api evolution literature. ACM Comput. Surv.,
54(8), oct 2021.

[35] lanwuwei. A pre-trained bert on stackoverflow corpus. https:
//github.com/lanwuwei/BERTOverflow, 2021.

[36] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural
model for generating natural language summaries of program
subroutines. ICSE ’19, page 795–806. IEEE Press, 2019.

[37] Bohan Li, Yutai Hou, and Wanxiang Che. Data augmentation
approaches in natural language processing: A survey. AI Open,
2022.

[38] Mingwei Liu, Xin Peng, Andrian Ma rcus, Zhenchang Xing,
Wenkai Xie, Shuangshuang Xing, and Yang Liu. Generating
query-specific class api summaries. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 120–
130, 2019.

[39] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong
Duan. Query expansion via wordnet for effective code search. In
22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6,
2015, pages 545–549. IEEE Computer Society, 2015.

[40] Edward Ma. Nlp augmentation. https://github.com/makcedw
ard/nlpaug, 2019.

[41] Matplotlib. Matplotlib api reference. https://matplotlib.org/sta
ble/api/index.html, 2021.

[42] Microsoft. Github website. https://github.com/, 2021.

[43] Microsoft. The visual studio code editor. https://code.visualstu
dio.com/, 2021.

[44] George A. Miller. Wordnet: A lexical database for english. Com-
mun. ACM, 38(11):39–41, November 1995.

[45] Benjamin Newman, Prafulla Kumar Choubey, and Nazneen Ra-
jani. P-adapters: Robustly extracting factual information from
language models with diverse prompts, 2021.

[46] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh
Nguyen, Lily Mast, Eli Rademacher, Tien N Nguyen, and Danny
Dig. Api code recommendation using statistical learning from
fine-grained changes. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 511–522, 2016.

[47] Anh Tuan Nguyen and Tien N Nguyen. Graph-based statistical
language model for code. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1, pages 858–868.
IEEE, 2015.

[48] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen,
Ahmed Tamrawi, Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N
Nguyen. Graph-based pattern-oriented, context-sensitive source
code completion. In 2012 34th International Conference on Software
Engineering (ICSE), pages 69–79. IEEE, 2012.

[49] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa,
Thomas Degueule, and Massimiliano Di Penta. Focus: A recom-
mender system for mining api function calls and usage patterns.
In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pages 1050–1060. IEEE, 2019.

[50] Numpy. Numpy api reference. https://numpy.org/doc/stable/r
eference/, 2021.

[51] Oracle. Java se 8 api documentation. www.oracle.com/technetwo
rk/java/javase/documentation/jdk8-doc-downloads-2133158.ht
ml, 2021.

[52] Pandas. Pandas api reference. https://pandas.pydata.org/docs
/reference/index.html, 2021.

[53] Python. Python standard library. https://docs.python.org/3/li
brary/, 2021.

[54] Maithra Raghu and Eric Schmidt. A survey of deep learning for
scientific discovery, 2020.

[55] Mohammad Masudur Rahman and Chanchal Roy. Effective refor-
mulation of query for code search using crowdsourced knowledge
and extra-large data analytics. 06 2018.

[56] Mohammad Masudur Rahman and Chanchal Roy. Nlp2api: Query
reformulation for code search using crowdsourced knowledge and
extra-large data analytics. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 714–714, 2018.

[57] Mohammad Masudur Rahman and Chanchal Roy. The replication
package for nlp2api. https://github.com/masud-technope/NL
P2API-Replication-Package, 2021.

[58] Mohammad Masudur Rahman, Chanchal K Roy, and David
Lo. Rack: Automatic api recommendation using crowdsourced
knowledge. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages
349–359. IEEE, 2016.

[59] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic
model for code with decision trees. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, page 731–747,
New York, NY, USA, 2016. Association for Computing Machinery.

[60] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion
with statistical language models. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 419–428, 2014.

[61] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to
Recommender Systems Handbook, pages 1–35. Springer US, Boston,
MA, 2011.

[62] Romain Robbes and Michele Lanza. Improving code completion
with program history. Automated Software Engineering, 17(2):181–
212, 2010.

[63] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini,
and Tristan Ratchford. Automated api property inference tech-
niques. IEEE Transactions on Software Engineering, 39(5):613–637,
2013.

[64] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas
Zimmermann. Recommendation Systems in Software Engineering.
Springer Publishing Company, Incorporated, 2014.

[65] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo,
Jacques Klein, Kisub Kim, and Yves Le Traon. Augmenting and

22

structuring user queries to support efficient free-form code search.
In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE ’18, page 945, New York, NY, USA, 2018. Association
for Computing Machinery.

[66] snyk. Jvm ecosystem report 2020. https://snyk.io/blog/devel
opers-dont-want-to-leave-java-8-as-64-hold-firm-on-their-prefe
rred-release/, 2021.

[67] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the
localness of software. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 269–280, 2014.

[68] Efstathiou Vasiliki, Chatzilenas Christos, and Spinellis Diomidis.
Word Embeddings for the Software Engineering Domain, March
2018.

[69] Fengcai Wen, Emad Aghajani, Csaba Nagy, Michele Lanza, and
Gabriele Bavota. Siri, write the next method. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
138–149. IEEE, 2021.

[70] Rensong Xie, Xianglong Kong, Lulu Wang, Ying Zhou, and Bixin
Li. Hirec: Api recommendation using hierarchical context. In 2019
IEEE 30th International Symposium on Software Reliability Engineer-
ing (ISSRE), pages 369–379. IEEE, 2019.

[71] Le Xue, Mingfei Gao, Zeyuan Chen, Caiming Xiong, and Ran Xu.
Robustness evaluation of transformer-based form field extractors
via form attacks, 2021.

Yun Peng received the B.Eng. degree from the
University of Science and Technology of China.
He is currently a Ph.D. candidate at the Chinese
University of Hong Kong. His research interests
are on intelligent code analysis, program anal-
ysis and artificial intelligence for software en-
gineering. He published several papers on top
conferences of software engineering such as
ICSE and ESEC/FSE.

Shuqing Li received the B.Eng. degree from
Southern University of Science and Technology
(SUSTech). She is currently working toward the
Ph.D. degree at the Department of Computer
Science and Engineering, the Chinese Univer-
sity of Hong Kong (CUHK). Her research inter-
ests include software testing, software analysis,
and intelligent software engineering.

Wenwei Gu received the B.Eng. degree from
Huazhong University of Science and Technol-
ogy, Wuhan, China. He is currently a Ph.D. stu-
dent in the Computer Science and Engineering
Department, The Chinese University of Hong
Kong, Hong Kong SAR. His current research
interests focus on AIops and data mining.

Yichen Li received the B.Eng. degree from
Huazhong University of Science and Technol-
ogy, Wuhan, China. He is currently a Ph.D. stu-
dent in the Computer Science and Engineering
Department, The Chinese University of Hong
Kong, Hong Kong. His current research interests
focus on software analysis and software reliabil-
ity.

Wenxuan Wang received his B.S. in Computer
Science and Technology from Huazhong Univer-
sity of Science and Technology, Wuhan, Hubei,
China; He is currently a PhD’s student from the
department of Computer Science and Engineer-
ing in The Chinese University of Hong Kong. Mr.
Wang’s research interests include AI software
reliability and Nature Language Processing. He
has published over 10 refereed journal and con-
ference papers in his research areas.

Cuiyun Gao received the Ph.D. degree from the
Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, in
2018. She is currently an Associate Professor
in Harbin Institute of Technology, Shenzhen. Her
research interests include software repository
mining, code intelligence, and malware detec-
tion. She had published 35+ publications in top-
tier conferences and journals in her area of ex-
pertise. She also served as a reviewer for many
conferences and journals.

Michael R. Lyu received his B.S. in Electri-
cal Engineering from National Taiwan University,
Taipei, Taiwan; his M.S. in Computer Science
from University of California, Santa Barbara,
USA; and his Ph.D. in Computer Science from
University of California, Los Angeles, USA. He
is currently Choh-Ming Li Professor of Computer
Science and Engineering in The Chinese Univer-
sity of Hong Kong. Prof. Lyu’s research interests
include software engineering, software reliability,
machine learning, cloud and mobile computing,

and distributed systems. He has published over 600 refereed journal and
conference papers in his research areas. His Google Scholar citation
is over 46,000, with an h-index of 104. Prof. Lyu initiated the first
International Symposium on Software Reliability Engineering (ISSRE)
in 1990. He was an Associate Editor of IEEE Transactions on Reliability,
IEEE Transactions on Knowledge and Data Engineering, IEEE Transac-
tions on Services Computing, and Journal of Information Science and
Engineering. He is currently on the editorial board of IEEE Access,
Wiley Software Testing, Verification and Reliability Journal (STVR), and
ACM Transactions on Software Engineering Methodology (TOSEM).
Prof. Lyu was elected to IEEE Fellow (2004), AAAS Fellow (2007),
ACM Fellow (2015), and named IEEE Reliability Society Engineer of
the Year (2010). He was granted with China Computer Federation
(CCF) Overseas Outstanding Contributions Award in 2018, and the 13th
Guanghua Engineering Science and Technology Award in 2020. He was
also named in The AI 2000 Most Influential Scholars Annual List with
three appearances in 2020.

