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Abstract—As a dynamic programming language, Python is
widely used in many fields. For developers, various language
features affect programming experience. For researchers, they
affect the difficulty of developing tasks such as bug finding
and compilation optimization. Former research has shown that
programs with Python dynamic features are more change-prone.
However, we know little about the use and impact of Python
language features in real-world Python projects. To resolve these
issues, we systematically analyze Python language features and
propose a tool named PYSCAN to automatically identify the use of
22 kinds of common Python language features in 6 categories in
Python source code. We conduct an empirical study on 35 popular
Python projects from eight application domains, covering over
4.3 million lines of code, to investigate the the usage of these
language features in the project. We find that single inheritance,
decorator, keyword argument, for loops and nested classes are
top 5 used language features. Meanwhile different domains of
projects may prefer some certain language features. For example,
projects in DevOps use exception handling frequently. We also
conduct in-depth manual analysis to dig extensive using patterns
of frequently but differently used language features: exceptions,
decorators and nested classes/functions. We find that developers
care most about ImportError when handling exceptions. With the
empirical results and in-depth analysis, we conclude with some
suggestions and a discussion of implications for three groups
of persons in Python community: Python designers, Python
compiler designers and Python developers.

I. INTRODUCTION

Python has become one of the most popular programming
languages, and is widely used in many fields such as artificial
intelligence and data science. According to GitHub Octoverse
2019 [20]], Python outranked Java as the second most popular
language on GitHub among repository contributors. Python is
constantly evolving, including extending language constructs
or features to enhance the language expressiveness, or improv-
ing the performance or functionality of core libraries, etc. For
example, Python 3.8 introduces positional-only parameters to
allow pure Python functions to fully emulate the behavior of
existing C coded functions, or allow the parameter name to be
changed in the future without affecting client code [23].

Various language features and libraries of Python bring
much convenience to developers, especially its flexibility,
expressiveness and succinctness as a dynamic language. How-
ever, due to the evolution and dynamic features of the lan-
guage, Python typically pays in weaker performance and
safety [44]], and brings problems for developers to build and
maintain Python applications. For example, objects in Python

may change their types in execution, which can cause type
errors and make it hard to infer and check the type of Python
objects.

Researchers have proposed some solutions to address the
above challenges. PySonar2 [49], a Python type inference tool
proposed to avoid type errors cooperated with type checkers
by automatically infer types of variables in source code, can
only have 49.47% accuracy in real-world programs [53]. To
improve the accuracy of type inference, Xu et al. combined
probability and machine learning methods to infer types in
Python [53]. Furthermore, recently researchers try to capture
the natural language features of code by introducing deep
learning models in this task and has accomplished better
accuracy [3l 9} 133]. Another example is Numba [4]], a Python
Compiler, which tries to compile restricted Python source code
to LLVM IR in order to accelerate the execution of Python
programs by reusing the LLVM backend. These solutions are
effective and valuable, but often encounter new problems or
challenges for certain Python language features. In view of
the large scale of real-world Python projects, often exceeding
10 or even 100 thousands of lines of code (KLOC) as shown
in Table we think it will be very valuable to conduct an
empirical study to find the distribution of common language
features used in Python projects and help Python users better
use these features by digging language feature using patterns
from popular Python projects.

In this paper, we systematically summarize 6 categories
of 22 language features and develop an automatic language
feature scanner named PYSCAN. PYSCAN combines Abstract
Syntax Tree (AST) traversal, type inference and standard
library scanning to comprehensively identify the usage of
language features. It accepts Python source files as input and
reports the language feature usage. We also conduct in-depth
analysis for some commonly and differently used language
features such as exception handling by manually checking
their using scenarios. Finally, we conclude some suggestions
and implications from the distribution and analysis of these
language features for three user groups consisting of the
whole Python community: Python designer, Python compiler
designer and Python developers.

To our knowledge, this is the first study to systematically
analyze language features and automatically identify their use
in Python projects via static analysis. Although Malloy et
al. [31] have investigated the transition from Python 2 to



Python 3 by using PyComply, they only focus on a limited
number of features at the grammatical level; while some other
studies focus on analyzing certain features such as dynamic
features [34], polymorphism [35]], or code changes [29].

The main contributions of this paper are as follows:

o We summarize 22 kinds of common language features,
which are divided into 6 categories including function,
type system, object-oriented programming, data structure,
metaprogramming and evaluation strategy.

e We develop an automatic language feature recognizer
named PYSCAN to identify and collect the usage charac-
teristics of language features in different Python projects.

o« We analyze the distribution of language feature usage
for 35 popular Python projects from 8 popular domains
and find that except for general used language fea-
tures different domains focus on some different features,
among which exception handling statements, decorators
and nested classes/functions are used most differently.

e We conduct in-depth analysis on exception handling
statements, decorators and nested classes/functions, and
then summarize their using scenarios and advantages.

o We conclude some suggestions and implications for de-
velopers and researchers targeting Python from the em-
pirical results and in-depth analysis of language features.

II. METHODOLOGY

In this section, we first highlight the specific research
questions (RQ) we wish to answer in Part Then we
introduce common language features we concern in Part
In Part we present PYSCAN to automatically analyze
language features in Python projects, including its overall
architecture, and key information used in the scanning process.
Finally we explain the techniques we used to analyze empirical
results collected by PYSCAN in Part and the dataset we
used to conduct our empirical study in Part

A. Research Questions

RQ1: What is the general distribution of language features
in real-world Python projects?

The continuous evolution of Python makes the language
features constantly changing. Some language features bring
challenges to the analysis of Python programs on correctness,
safety and improving performance. Compared with the pro-
gram analysis of these goals, the existence of language features
in Python source code is much easier to judge. If certain
language features are not used in practice, then there is no need
to brainstorm to explore their safety issues, optimization and so
on. In this research question, we hope to get a general view of
what language features are used in real-world Python projects
and how their usage is distributed, and find out commonly
used and rarely used language features.

RQ2: What are the differences of language feature usage
distribution among different domains of Python projects?

Projects in different domains may be developed under
different requirements to accomplish various tasks. Do they
show similar trends in the use of language features? If the

distributions of language features used by projects across
different domains are similar, we can rank these features from
the most to the least common, and summarize the general
rules for using these features. Otherwise, if a project in a
certain domain is very different from other projects in the
use of language features, we should pay more attention to
summarizing the usage scenarios of these features with usage
differences, and give suggestions on coding, error detection,
and optimization accordingly.

RQ3: Why are certain language features used frequently
and how are they used?

Different language features can have different expression
intentions and use occasions. There are always more than one
available choice of language features for one circumstance.
Why do the developers of popular Python projects prefer
certain language features over others? Do these language
features have the unique advantages of improving the safety
and performance of projects or truly bring much convenience
and flexibility for them? And do these language features have
wider uses beyond their original use? In this RQ, we hope to
dig more valuable and extensive using patterns of frequently
used language features and figure out why such usage can
improve the quality of Python projects. It is significant for the
entire Python community to understand the extensive use of
these language features. With the guidance of using patterns
derived from popular Python projects, developers are more
likely to make better choices when choosing language features.

RQ4: How does this empirical study help improve the
design and quality of Python tasks?

As a popular dynamic programming language, Python is
used among different user groups. They may focus on different
characteristics of this language, but they all have to interact
with its language features. How can our study help these
people improve their work? In this RQ, we summarize impli-
cations from empirical results and in-depth manual analysis of
language features. We hope to provide advice to different types
of Python users such as Python compiler designers, Python
application developers.

B. Common Language Features We Concern

Python is an interpreted, object-oriented, high-level pro-
gramming language with dynamic semantics. We want to
understand the characteristics and usage of common language
features of these programming paradigms in Python. By an-
alyzing the Python language specification, we focus on the
22 common language features listed in Table [I] that reflect the
special characteristics of Python, which are divided into the
following 6 categories:

o Function. Functions are the basis for encapsulating a
group of operations to perform a task, which closely
connect to the functionality of the program. We choose
9 language features related to functions, including 5
API-related (arguments and multiple return), 3 function-
definition-related and 1 exception-related. The API af-
fects the correctness and safety of use and interoperabil-
ity, the function definition of special features affects the



TABLE I
SIX CATEGORIES OF LANGUAGE FEATURES IN PYTHON
Category Language Feature Sf:;‘;g;g igl’;tl;: de
Keyword Argument [18] L-AST argument
Keyword-only Argument [11]| L-AST argument
Positional-only Argument [18] L-AST argument
Multiple Return L-AST Return
A. Function Packing and argument,
Unpacking Argument L-AST Call
Decorator L-AST FuncDef
Exception L-AST g"”’R‘”“’
ry
B FuncDef,
Recursion [23] G-AST Call
Nested Function [39] G-AST FuncDef
L-AST & argument
) First-class Function [2] Type & Return,
B. Type System Sid Assign
Gradual Typing [41T43[152] | L-AST FuncDef
For,While
C. Loop & Loop L-AST Continue,
Evaluation Strategy Break
Generator L-AST Yield
Inheritance G-AST ClassDef
D. Object-Oriented L-AST &
Programming Polymorphism [8] Type & argument
Std
Encapsulation [37] L-AST Q?bee p
Nested Class [40] G-AST ClassDef
E. Data Structure List Comprehension [17] L-AST ListComp
Heterogeneous List L-AST & .
and Tuple Type & SubScript
Std
Introspection [12] L-AST Call
F. MetaProgramming | Reflection L-AST Call
Metaclass [16] L-AST ClassDef

complexity of analysis and implementation, and the use
of exceptions can reflect the robustness of the code.
Type system. As a dynamic programming language,
Python has a more flexible type system which allows
variables to change types at runtime. However, such
feature can also increase the occurrence of type errors,
and it may be difficult to build checking and inference
tools to find such errors. In this category, we focus on
2 language features including first-class functions whose
arguments or return values can be functions, and gradual
typing [38}, 47] that allows one to annotate only part of a
program. The former increases the difficulty of program
analysis, while the latter can leverage desirable aspects
of both dynamic and static typing.

Loop & Evaluation Strategy. Performance of pro-
grams is always an important topic in both industry and
academia. For programs written in any language, the use
of loops largely affects the performance of programs.
For Python, the lazy evaluation strategy introduced by
generators can have performance implications, both for
memory management and function run time. However,
such strategy may confuse users and lead to logical errors.
Object-Oriented Programming (OOP). Python mainly
uses classes to implement the concept of OOP. Inheri-
tances of classes occur frequently but some of them such
as diamond inheritance can lead to class initialization
problem. Polymorphism and nested class have extensive

usage in fields such as testing while encapsulation in-
creases the safety by hiding some information in class.

« Data Structure. Python’s dynamic feature allows the ex-
istence of heterogeneous data structures. However, using
such data structures is highly risky since we have no sense
about the result when we index these data structures.
Users may forget to handle different possible types gener-
ated from them and introduce type errors. Therefore, this
paper focuses on Python-specific list comprehension and
heterogeneous lists or tuples, which increase the difficulty
of type inference and program analysis.

o Metaprogramming. Metaprogramming is a program-
ming technique in which programs have the ability to
treat other programs as their data. This technique is
popular with code framework developers. Metaprogram-
ming in Python relies on type introspection, reflection
and metaclass efc. These features enhance the flexibility
and expressivity of the program, but also increase the
difficulty of static analysis efc. So we want to recognize
their use in real-world Python projects.

C. PYSCAN: Python Language Feature Scanner
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Fig. 1. Overview architecture of PYSCAN
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In order to collect language feature usage information from
real-word Python projects, we propose an automatic language
feature scanner named PYSCAN, whose architecture is shown
in Fig. [1] There are five major parts in PYSCAN:

AST Generator, which parses Python source code in the
Python project to generate corresponding abstract syntax tree
(AST) by simply calling the standard module ast.

AST Visitor, which traverses the whole AST to identify
specific types of AST nodes listed in column 4 of Table[l} and
further collect three kinds of information required for language
feature recognition: (1) function and class names, (2) class
inheritance relationship, (3) function call relationship.

Type Inference Tool, which infers the types of Python
objects. Type information is essential for identifying language
features such as first-class function, heterogeneous list and
tuples. PYSCAN loosely couples with existing type inference
tools to obtain type inference results of the Python code. Since
we want to perform fast type inference on a large number of
Python source files, we choose PySonar2 [49] with relatively



high accuracy instead of the recent type inference method
based on deep learning models [3} 33]] with higher accuracy.

Standard Library Scanner, which is a simplified version
of PYSCAN and scans three kinds of information in standard
libraries in advance: 1) all function definitions and their
locations; 2) all functions with parametric polymorphism and
their locations; 3) all functions returning heterogeneous lists
and tuples and their locations. Since standard libraries do not
change frequently, such information can be stored in advance
and used to increase accuracy of PYSCAN and avoid the loss
of true-positives when scanning real-world Python projects.

Language Feature Recognizer, which accepts information
from the above four parts, compares such information with
language feature patterns designed in Section and finally
generates the language feature usage report. Columns 3~4 in
Table [l list the scanning strategy and relative AST nodes of
each language feature. There are 4 scanning strategies:

e L-AST, which means that scanning of a language feature
is only related to a single AST node.

e G-AST, which means that scanning of a language feature
needs global information of AST.

o Type, which means that scanning of a language feature
needs information from type inference.

e Std, which means that scanning of a language feature
needs information from standard libraries.

D. Result Analysis

To answer RQ1 and RQ2, we use PYSCAN to count the
number of every language feature used in a project. Since some
language features related to functions appear more frequently
than those related to classes, we normalize the result by
dividing the number of language features by the number of
functions or classes to remove such difference. The normalized
data can be seen as what proportion of functions or classes uses
this feature. For RQ1 and RQ2, we separately combine the
results of all projects and sub-domain projects, calculate the
overall distribution and sub-domain distribution of language
features, and analyze the difference between the sub-domain
distribution and the overall distribution.

To answer RQ3, we conduct an in-depth analysis for some
frequently and differently used language features. We manu-
ally check and summarize their using patterns in the source
code and dig their extensive usage. For each frequently used
language feature, we further collect more detailed data for a
deeper understanding.

To answer RQ4, we make use of results collected in the first
three RQs and read document of some popular Python projects
to discover the advantages and disadvantages of using certain
language feature. With all these information, we conclude
some suggestions for certain Python user groups such as
Python compiler designers, Python application developers.

E. Dataset

We collect 35 popular and influential Python projects from
Github according to 2019 Annual Report of Github [20]] and
2019 Python Survey of Jetbrains [27], and divide them into 8

domains shown in Table [I[Il The first two columns show the
domain name and number of Python projects in each domain.
These projects do not always contain only Python source files,
so we first filter all other files out and count the number of
Python code lines and number of files as shown in columns
3~5 and 6~8. The whole dataset contains 25,059 Python
source files and about 4.3 million lines of Python code. The
average ratio of Python code is about 38%, which is calculated
by dividing lines of Python code by lines of all code. The
detailed ratios of Python code for projects in each domain are
listed in columns 9~11. To make our empirical results more
representative, we list the Github stars for projects in each
domains in the last three columns. As we know, Github star
intuitively shows the contribution and influence of the project
and the preference of other developers.

III. LANGUAGE FEATURES AND THEIR DISTRIBUTION

In this section, we first introduce the selected six categories
of language features in turn, and then show the empirical
results collected by PYSCAN when answering RQ1 and RQ2.

A. Functions

1) Keyword/Keyword-only/Positional-only — Parameters:
Keyword parameter can accept an argument preceded by an
identifier (e.g., name=) in a function call or a value in a
dictionary preceded by “**” [18]. It always appears between
separator “/” and “*”. Keyword-only parameter is a named
parameter placed after separator “*”, which is introduced in
Python 3 to avoid being automatically filled by a positional
parameter [43]]. Positional-only parameter appears to the left
of separator “/”, which has no externally-usable name and is
passed in parameter order. It is introduced in Python 3.8 to
obtain performance benefits and better API design [24].

2) Multiple Return: Functions in Python can return an
object holding multiple values, which is similar to C/C++ and
Java. They can also return multiple values by a tuple without
parentheses or a list with square brackets.

3) Packing and Unpacking Arguments: Python provides
some methods to pack and unpack arguments in function calls.
If it is not sure how many parameters to pass in, add “*”
before a parameter name in a function definition to pack the
parameters. “*” (for list or tuple) and “**” (for dictionary) are
used to unpack packed parameters and pass them to a function.

4) Decorator: Decorators allow developers to modify the
behavior of function or class [50l 51]]. They allow developers
to wrap another function in order to extend the behavior of
the wrapped function without permanently modifying it.

5) Exception: Exceptions are errors occurred during exe-
cution. The raise statement triggers exceptions which can be
captured by the try...except statement to handle in Python.
Moreover, parameters in exceptions can affect the type in-
ference of some Python compilers like Numba [28], which
only accepts exceptions with constant parameters to reduce
the complexity of type inference.



TABLE II
EIGHT DOMAINS OF PYTHON PROJECTS SCANNED BY PYSCAN

Domain Nums of KLOC in Python Nums of Python Files Ratio of Python Code Github Star (k)
Projects Avg | Max | Min Avg | Max Min Avg Max Min Avg | Max | Min
Web 5 6.3 24 0.6 550 | 2034 34 51.38% | 84.17% | 48.07% || 30.7 | 52.7 1.5
Data Science 5 157 | 272 117 670 856 417 41.52 % | 74.42% | 20.60% 12.8 | 26.8 2.4
ML & DL Framework 6 197 | 605 19 949 | 2555 171 25.35% | 85.00% | 14.80% || 55.7 149 19
AutoDrive 2 20 23 17 193 278 108 4.53% 4.57% 4.48% 17.1 - -
Quantum Computing 6 45 91 18 375 667 197 72.53% | 91.79% | 32.33% 1.4 2.9 0.4
DevOps 5 331 947 4 1902 | 6336 45 73.82% | 84.24% | 48.48% 15.3 | 45.0 1.0
(&Y% 3 14 22 2 100 182 12 7.62% 91.76% | 3.45% 4.6 8.4 2.3
Image Processing 3 26 44 10 272 522 25 55.87% | 66.94% | 46.09% 5.4 7.8 4
Total 35 4369 25059 38.51% (Avg) 683.7

6) Recursion: Recursion is a method of solving a problem
where the solution depends on solutions to smaller instances
of the same problem [23]. It can significantly reduce code
complexity and is a common programming paradigm.

7) Nested Function: Python supports nested function,
which is defined inside another function. Nested functions can
be used to create closures, where outer functions returns inner
functions. Closures can avoid the use of global values and
provides some form of data hiding [39].

B. Type System

1) First-class Function: Python supports first-class func-
tions, which can be passed as arguments, returned as return
values, and assigned to variables [2]].

2) Gradual Typing: Gradual typing is a type system that
allows parts of a program to be dynamically typed and other
parts to be statically typed [41]. Type hints and function
annotations [45} [52]] make gradual typing possible in Python.
This feature may significantly reduce type errors at run-time
and make Python much safer.

C. Loop & Evaluation Strategy

1) Loop: The for/while loops are the main time and memory
consuming part of programs, so identifying them is important
for optimization. In addition, the break and continue used to
control the loop also need to be recognized.

2) Generator: Python uses eager evaluation in most cases.
However, it also supports lazy evaluation in generator. Gener-
ator functions created using yield statement, allow developers
to declare a function that behaves like an iterator.

D. Object-Oriented Programming

1) Inheritance: Python supports five types of inheritance,
i.e., single, multiple, multilevel, hierarchical and diamond. The
former two are more common, so we only explain the others:

o Multilevel inheritance, which means a class inherits from
a derived class.

e Hierarchical inheritance, which means more than one
class is derived from the same class.

e Diamond inheritance, which occurs if classes B and
C inherit from a superclass A, and another class D
inherits from B and C. Such inheritance may affect the
initialization and method call of classes and increase the
complexity of code, making programs hard to maintain.

2) Polymorphism: Python supports parametric polymor-
phism, in which a function or a data type can be written
generically regardless of the type of values. Both standard and
user-defined functions may have parametric polymorphism.

3) Encapsulation: 1t is used to hide the value or state
of structured data objects in a class to prevent unauthorized
parties from directly accessing them. In Python, members in
a class are public by default, and it is agreed that members
prefixed with “_” are protected and those prefixed with “__”
are private [46]. But it is just a convention and does not prevent
instance variables from accessing or modifying such members
of the instance, e.g., “el1._a=20".

4) Nested Class: A nested class is a class declared entirely
within the body of another class. It is usually used to group
two or more classes or hide classes from the outside.

E. Data Structure

1) List Comprehension: As one of Python’s most distinc-
tive features, list comprehension provides a concise way to
create lists based on existing lists [[17]. However, using them
too much or writing them too long may cause the code to be
inefficient and hard to read.

2) Heterogeneous List and Tuple: Lists and tuples are com-
monly used data structures, but they are often used in different
situations for different purposes. Lists are mutable and used to
store homogeneous elements, while tuples are immutable and
used to store heterogeneous elements. However, heterogeneous
lists and tuples are hard to implement thus compilers such as
Numba provide limited support for them.

F. Metaprogramming

1) Introspection/Reflection: Introspection is the ability of
a program to examine the type or properties of an object at
runtime [12]. Reflection is a step forward than introspection,
indicating the ability to examine and modify the behavior of
code at runtime. They both are dynamic features which are
hard to analyze statically.

2) Metaclass: By default, classes are constructed using
type(). The class body is executed in a new namespace and the
class name is bound locally to the result of type(name, bases,
namespace). Python provides a method to customize class
definition process by passing the metaclass keyword parameter
in the class definition line, or by inheriting from an existing
class which includes such a parameter [16].



G. Distribution of Language Features in Python Projects

We have realized the recognition of the above six categories
of language features according to the architecture of PYSCAN
introduced in Section [[=Cl Then we scan 35 real-world
Python projects mentioned in Section [[I-E] using PYSCAN to
quantitatively answer RQ1 and RQ2.

RQ 1: What is the general distribution of language features
in real-world Python projects?

Single_Inheri
Decorator
Keyword_Arg
For_Loop
Nested_Class
Introspection
Unpacking_Arg
Multilevel_Inheri
Hierarchical_Inheri
Raise_Stat
Multiple_Inheri
Try_Stat
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Language Feature

il | |
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|
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Fig. 2. General distribution of language feature usage in 35 Python projects

In total 35 Python projects from 8 different application
domains, PYSCAN scans 25059 files, covering more than 4.3
million lines of code. Fig.[2]shows the 16 most frequently used
language features. The percentage of each language feature
shows the proportion of functions/classes used them.

Finding 1: Single inheritance, decorator, keyword pa-
rameters, for loop and nested class are top 5 used lan-
guage features in real-world projects, while position-only
parameters, heterogeneous list and tuple, keyword-only
parameters, function assigned to another variable are
bottom 5 used language features.

Inheritance: Compared to multilevel inheritance (8.93%),
multiple inheritance (6.79%), hierarchical inheritance (7.35%)
and diamond inheritance (0.90%), single inheritance (41.06%)
is the main type developers choose in all 5 types of inheri-
tances. This result matches our intuition because single inher-
itance forms the basic usage of classes and is the foundation
of the other four. However, we want to emphasize that single
inheritance may occur with diamond or multilevel inheritances
at the same time. Thus developers are advised to carefully
check the inheritance relationship even if a class has only
one base class. Diamond inheritance itself actually is hardly
used, which may be because it is complex and can easily lead
to class initialization problems. The using frequency of the
remaining three inheritances are almost equal, and accounts
for a relatively high percentages (6.79%~8.93%). This result
shows the diversity of classes in popular Python projects.

Parameters: Regarding parameters in all function defi-
nitions, 14.80% of functions use keyword parameters, while
0.14% of functions use keyword-only parameters and no
function uses position-only parameters. The benefits of key-
word parameters are obvious: not only can it be assigned
default values to avoid being passed every time, but also
maintain interface consistency so that changes of the posi-
tion of parameters in the interface will not affect the client
code. However, position-only parameter is newly introduced
in Python 3.8 released in Oct. 2019, while the use of keyword-
only parameter is a bit complicated and some existing Python
compilers or analyzers may not support it. This may be the
reason why these two kinds of parameters are not widely
adopted in the Python community.

Other Features of Higher Usage: Safety checks such
as exception handling statements (17.11%), which contains
Exceptions and try,raise statements, testing techniques such as
nested class (14.16%) / nested function (6.51%), decorators
(17.14%) and dynamic features such as introspection (10.86%)
bring more energy to Python programs compared to traditional
static languages. We will discuss the former three in Section[[V]
with code examples in detail. For dynamic features such as
introspection, after manually checking the source code we find
that developers usually use function calls with introspection
to check attributes and avoid possible errors. For example,
super() is used in the initialization function of classes to avoid
initializing a base class two or more times. isinstance() is used
to get the type information of variables and add a type check.

Finding 2: Developers of popular Python projects tend
to use relatively simple language features focused on
safety checks, testing and some dynamic features, but
avoid using those complex and error-prone features such
as heterogeneous list and tuple, diamond inheritance, etc.

We find that those seldom-used language features have
commonalities: they are often complex to implement or error-
prone. As mentioned earlier, heterogeneous lists and tuples
pose challenges to compiler design and are prone to type
errors. Corresponding to our inference, they are actually
rarely used (both less than 0.1%). Metaclasses (0.3%) are
hard to implement and understand. For first-class functions,
developers prefer to use function as argument (2.1%), rather
than as return value (0.3%) or assign to another variable
(0.3%). The reasons may be as follows: 1) language features
such as decorators or callback design pattern use functions
as parameters, 2) developers usually encapsulate common
operations as functions and pass them to other functions to
avoid code redundancy.

Type inference is important for early detection of type
errors and better compilation to produce reliable and efficient
code. Although recent type inference methods based on deep
learning can improve the accuracy of inference to a certain
extent, the effect of such methods depends on the dataset used.
In order to give more auxiliary information to type inference,



Python introduces gradual typing feature for developers to
annotate types. However, in our empirical study we find that
popular Python projects slightly use gradual typing, with a
usage rate of only 0.6%. We advise developers to add more
type annotations to their programs, which can not only help
deepen type-related research, but also enhance the type safety
of projects since these annotations can be used by type check-
ers to find type errors. Similarly, keyword-only parameter has
been introduced to avoid misuse caused by rapid API changes
since 2006 [43]. However, current Python projects seem not
to adopt this feature and still focus on keyword parameters to
reduce interface changes.

Finding 3: Some language features designed to enhance
the safety of Python projects such as gradual typing and
keyword-only parameters are not widely used in real-
world Python projects.

RQ 2: What are the differences of language feature usage
distribution among different domains of Python projects?

We further analyze the impact of the application domain
of the project on the use of language features. Fig. [3] shows
the usage rate of ten language features in Python projects
from eight domains. Some commonly used language features
discussed in RQ1 are not included . From this figure, we can
see the differences in the use of language features of Python
projects from different domains.

Finding 4: Apart from those commonly-used language
features, Python projects from different domains use
different language features according to their domain
characteristics.

We summarize the differently used language features and
possible reason as follows:

o Autodrive: Projects in this domain have the highest pro-
portion of using for loops (21.86%), no matter compared
with the same feature in other domains (less than 16%) or
other features in the same domain (less than 10%). After a
manual check of the source code, we conclude a possible
reason that these projects repeatedly receive information
from sensors and handle them to guide driving.

e CV: Projects in this domain uses more gradual typing
and decorators. Similar to the following ML & DL
framework, decorators similar are mainly used to handle
computations. However, the use of gradual typing is
surprising. Unlike the following Quantum Programming
projects which introduce some new types, CV projects
do not seem to have a strong motivation than other
domains. Combined with the lack of exception handling
statements and nested classes, a possible explanation is
that developers in CV may focus more on the type errors.

e Data Science & Image Processing: Language feature
distribution in these two domains does not show typical

differences compared with others. Actually their distribu-
tion looks closely to the general distribution in RQ1.

e DevOps: Projects in this domain typically pay more
attention to exception handling as they use the most try
statements. This may be because they try to achieve
program safety and stability through runtime exception
capture. In addition, compared to other domains, projects
in this domain use the most argument unpacking, partly
because they use more exception handling and decorators.
Such two kinds of features always accept a function and
its packed parameters as parameters.

e ML & DL Framework: Compared with other domains,
projects in this domain use the most decorators and
nested functions. Such projects are computationally in-
tensive and implement a lot of algorithms and models to
abstract features from the dataset. Some common opera-
tions and even compilation strategies (e.g., @torch.jit.* in
PyTorch [32]]) can be defined as functions or decorators
to reuse in different algorithms. This not only reduces the
code size, significantly improves performance and com-
patibility, but also makes the code easier to understand.

e Quantum Programming: Projects in this domain create
new types (e.g., qubit) that do not exist in Python. Python
compilers or checkers do not check these new types, so
adding annotations is necessary to avoid type errors. Thus
they use gradual typing which is rarely used in other
projects, as well as more decorators and introspection.

o Web: Projects in this domain use the most nested classes
compared with other domains. One of the important uses
of nested classes is testing. We manually analyze source
code and find there are indeed a lot of code in these
projects performing tests. Unlike DevOps projects requir-
ing dynamic exception handling, Web projects prefer to
write more test code to find most bugs before deployment.

Finding 5: Language features used most differently are
gradual typing (used in only 2 domains), exception han-
dling statements (the maximum and average usage rates
are 16.36% and 6.74%), nested classes (the maximum and
average usage rates are 25.60% and 14.16%), decorators
(the maximum and average usage rates are 25.68 and
17.14%). Such differences always reveal extensive using
patterns and deserve in-depth analysis.

IV. IN-DEPTH ANALYSIS AND DISCUSSION

In this subsection, we focus on answering RQ3 and RQ4.

RQ 3: Why are certain language features used frequently
and how are they used?

In the RQ2 study, we find that decorators, exception han-
dling statements, and nested classes are used most differently,
thus deserving in-depth analysis. We next discuss these three
language features and try to find why and how they are used
frequently and differently in the following three subsections.
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Fig. 3. Language feature usage of Python projects from eight domains

TABLE III
USAGE INFORMATION OF BUILT-IN AND USER DEFINED DECORATORS

Built-in User-defined

like UP-D7 can control the compilation strategy of Python
code, e.g., functions annotated with @torch.jit.script_method
will be translated into TorchScript [42] for optimization.

@staticmethod | @classmethod @property
2259 (14.46%) | 1903 (12.18%) | 11456 (73.36%) || 46019 (74.66%)
15620 (25.34%)

A. Decorators

As a way to modify the behavior of function or class,
decorators allow users to wrap another function to extend the
behavior of wrapped function without permanently modifying
it. To understand the use of decorators in real-world projects,
we further collect the usage information of three built-in dec-
orators [[I]] and user-defined decorators, as shown in Table m
The @classmethod and @staticmethod decorators are used to
define methods inside a class namespace that are not connected
to a particular instance of that class. The @property decorator
is used to customize getters and setters for class attributes.

Finding 6: Developers prefer to define their own decora-
tors instead of using built-in decorators, and the former is
about 3x the latter. And the use of @property accounts
for 3/4 of the total number of built-in decorators.

We then conduct a manual check to see how the user-defined
decorator is used in the real-world Python projects. Code [I]
shows seven typical using patterns (UP-D1~UP-D7) of user-
defined decorators we find.

Decorators bring much convenience to the testing process,
such as setting up the testing environment (UP-D1), skipping
the test unless the module has certain features (UP-D2), and
setting input arguments for testing (UP-D3). Decorators can
also label the deprecated function (UP-D4), not only to remind
users to change to the new version, but also to maintain back-
ward compatibility. Decorators like UP-D5 can realize over-
loading, so that functions such as equal support not only regu-
lar NumPy arrays but also other arrays derived from them. This
usage significantly reduces the code size and greatly improves
the compatibility while almost not affecting performance [26].
Decorators like UP-D6 can filter and convert different types of
function arguments to the same type, e.g., string. Decorators

# UP-DI from Django v3.0.4
@setup({ " if —tag01 ' : *{% if foo %}yes{% else %}no{% endif %} })
def test_if_tag0l (self):

# UP-D2 from Django v3.0.4

@skipUnlessDBFeature( ' can_create_inline_fk ")
def test_inline_fk (self):

9| # UP-D3 from Pandas v1.0.3

10| @pytest.mark.parametrize(”cache”, [True, False])

11 def test_to_datetime_dt64s (self, cache):

13| # UP-D4 from Tensorflow v2.2.0-rc3

14| @deprecation.deprecated (
15 ”2016-12-30",
16 “otf .mul(x, y)* is deprecated; use ‘tf.math.multiply(x, y)° or ‘x = y*”)

17| def _mul(x, y, name=None):

19| # UP-D5 from Numpy v1.8.3
20| @array_function_dispatch( _binary_op_dispatcher)
21| def equal(xl, x2):

23| # UP-D6 from Django v3.0.4
24| @stringfilter

25| def addslashes(value):

26
27| # UP-D7 from Pytorch vI.5.0
28| @torch.jit.script_method

29| def forward(self, input):

Code. 1. Typical using patterns of decorators

B. Exception Handling
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Fig. 4. Standard errors exceptions raised in real-world Python projects

For exception handling, in order to understand what errors
developers care most, we further collect the standard errors
raised by exception handling statements from the evaluated
projects. The results are shown in Fig. [



Finding 7: Developers care most about ImportError,
ValueError, AttributeError, KeyError and OSError, which
totally account for 80% of all errors.

In Code 2] we show five typical using patterns of exception
handling statements, i.e., UP-E1~UP-ES5.

1| # UP-El from Ansible v2.9.7

2| try:

3 basestring

4| except NameError:

5 basestring = string_types
6| # UP-E2 from Ansible v2.9.7

7| resp = self.client.api.get(uri)
8| try:

9 response = resp.json ()

10| except ValueError as ex:

11 raise F5ModuleError(str(ex))

12| # UP-E3 from Ansible v2.9.7

13| try:

14 from ansible . module_utils.common._json_compat import json

15| except ImportError as e:

16 print ("\n{{"msg”: “Error: ansible requires the stdlib json: {0}", “failed™:
true}}’ . format(to_native(e)))

17 sys.exit (1)

18| # UP-E4 from Ansible v2.9.7

19| try:

20 return int(self._values[ priority_to_client’])

21| except ValueError:

22 return self._values[ priority_to_client’]

23| # UP-E5 from Ansible v2.9.7

2| try:

25 return check_type_str(value, allow_conversion)
26| except TypeError:
27 common_msg = ‘quote the entire value to ensure it does not change.’

Code. 2. Typical using patterns of exception handling statements

The first three patterns handle errors caused by differences
between Python versions (UP-E1), interaction with other de-
vices or services (UP-E2), and module importing (UP-E3).
Such usage provides a good way to improve the compatibil-
ity and adaptability of Python programs when changing in
Python versions, devices or services, modules, etc. Python
is popular for its rich modules. A large project always has
many submodules with different functions, and the function
in each submodule relies on other submodules. The interfaces
between modules keep changing over time, causing the most
ImportError errors. The last two patterns are both about types,
which deal with errors when converting one type to another
(UP-E4), and checking the type of certain variables (UP-E5).

C. Nested Classes and Nested Functions

1| # UP-NI from Django v3.0.4

2| class ModelFormBaseTest(TestCase):

3 def test_no_model_class(self):

4 class NoModelModelForm (forms . ModelForm) :

5 pass

6 with self.assertRaisesMessage (ValueError, ModelForm has no model class

specified.’”):

7 NoModelModelForm ()
8| # UP-N2 from Pyquil v2.22.0
9| class QuilParser ( Parser ):

10 class QuilContext(ParserRuleContext):
11 def quil(self):

12 class AlllnstrContext(ParserRuleContext):

13 def alllnstr(self):

14

15| # UP-N3 from Django v3.0.4

16| class ModelFormMetaclass (DeclarativeFieldsMetaclass):

17 def __new__(mcs, name, bases, attrs):

18

19| class PriceForm (forms.ModelForm) :

20 class Meta:

21 model = Price

2 fields = *__all__

23| # UP-N4 from Pillow v7.1.2

24| def load_signed_rational (self, data, legacy_api=True):

25

26 def combine(a, b):

27 return (a, b) if legacy_api clse IFDRational(a, b)
28 return tuple (combine (num, denom) for num, denom in zip(vals[::2], vals

[1::2]))

Code. 3. Typical using patterns of nested classes or functions

Code [3] shows four typical using patterns of nested classes
and functions. By manually checking the source code, we find
that test files use the most nested classes (UP-N1), where
the code to be tested is placed in a single class. Actually
nested functions also have similar usage. This can not only
hide the test details from outside but also make testing more
convenient. Another common pattern for nested classes is to
implement different components of a module, for example in
pattern UP-N2, each part of the parser is implemented as a
nested class. Developers also use nested class to customize
the derived class from a metaclass. They define a small inner
class with metadata to guide the generation of new classes
from a metaclass as in UP-N3. The last pattern UP-N4 is used
frequently for nested functions, which occurs when developers
want to hide a repeated operation inside a function. RQ 4: How
does this empirical study help improve the design and quality
of Python tasks?

In this RQ study, we hope to provide certain user groups
with some implications and advice based on the results of the
first three RQs. We divide users into 3 groups: Python design-
ers, Python compiler designers, Python application developers.

For Python designers, we greatly appreciate their work for
bringing such a powerful programming language to the world.
Python has been widely used in many domains. It evolves fast
and each version brings some new features, for example, the
position-only parameter is introduced in Python 3.8 to tackle
certain problems raised by Python community. However, in our
study we find that some new features have not been widely
adopted by developers. The typical one is gradual typing.
Gradual typing allows users to annotate only part of a program
to statically type and enhance the type safety. Lack of human
type annotations as ground truth also hinders some use of deep
learning techniques to help improve type safety. We think a
possible reason may be that adding type annotations is not
easy in Python and greatly enlarges code size. A similar case
happens on keyword-only parameter, which was introduced
in Python3, but has not been supported by some Python
compilers even now. Therefore, Python designers can pay
more attention to simplifying the use of features which truly
brings benefits to programs.

For Python compiler designers including program analysis
designers, they have proposed different compilers or analyzers
for different goals such as performance optimization and bug
finding. However, such compilers and analyzers only support a
subset of Python, so how to choose language features becomes
crucial. In RQ1 study, we find that developers focus on rela-
tively simple language features on safety checks, testing and
some dynamic features. We suggest Python compiler/analyzer
designers focus more on these features, rather than complex
features which easily cause errors such as heterogeneous lists
and diamond inheritance. We hope the general distribution of
language feature usage we show in RQ1 can help the design
of some Python compilers.

For Python application developers, we list some typical
using patterns of common language features in RQ3. These
patterns are not trivial and can improve the safety, compati-



bility and performance of Python programs. Thus we highly
recommend the application developers to adopt these patterns.

V. THREATS TO VALIDITY

Our study mainly suffers from three kinds of threats:

Threats to dataset. We build our dataset by choosing 35
popular Python projects. We try to make our dataset more
representative by selecting the most influential projects in
Python community. However, these projects may not contain
all typical language feature patterns. We mitigate this problem
by choosing the most popular and influential Python projects.

Threats to type inference. We use PySonar2 as our type
inference tool since it infers types quickly with relatively high
accuracy. However, there are some functions or variables that
PySonar2 fails to infer, which might affect the recognition of
language features such as polymorphism. We make a trade-
off between the accuracy and time consumption of inference
techniques in this study. However, PYSCAN can be improved
by replacing PySonar2 with more advanced in the future.

Threats to language feature identification. There exists
some dynamic features in Python projects which can hardly
be identified in static analysis. We mitigate this problem by
identifying typical function calls with these features. Although
this can catch most dynamic features, we may still miss some
complex implementations of them.

V1. RELATED WORKS
A. Analysis of Language Features

In recent years, researchers have conducted several studies
on certain language features of Python. Akerblom et al. study
dynamic features [34] and polymorphism [35] in Python pro-
grams based on traces of run-time data. Lin et al. study fine-
grained source code changes of Python software by developing
an automatic change extraction tool PyCT [29]. Vitousek et
al. present Reticulated Python, a system for experimenting
with gradual-typed dialects of Python. These dialects are
syntactically identical to Python 3, but provide static and
dynamic semantics for type annotations that already exist in
Python 3. Malloy et al. develop a Python compliance analyser,
PyComply, and use it to measure and quantify the degree
to which Python developers were making the transition from
Python 2 to Python 3 [30, 31]]. Biswas ef al. create a dataset to
enable MSR (mining software repositories) research on Data
Science programs written in Python [6]. They extract such
projects from GitHub, and then map their Python AST to Boa
AST, and reuse Boa infrastructure [13] to generate datasets
and provide public queries.

Apart from Python, language features of other programming
languages also get focused. Dyer et al. analyze a large number
of open source Java projects to study the usage of Java
language features [14]]. There are also some studies separately
analyzing overloading features in both Java [19] and C++
programs [48]. Rodrigues et al. investigate how developers
use dynamic features based on 28 open-source Ruby projects
[36]. Dilley et al. analyze how massage passing concurrency
is used in Go projects from GitHub [10].

B. Type Inference

As a special case of language feature analysis in Python,
type inference of Python becomes a hot topic recently. For
Python type inference tools, PySonar2 is a type inference tool
in Python implemented by Yin Wang [49]]. It can infer 49.47%
types of variables in real-world Python programs according to
the experiment conducted by Xu et al. [53]. Google proposes
a type checker Pytype, which firstly infers the types of objects
in Python source files and then conducts a type check [21].
Pyre proposed by Facebook also has an independent inference
model for users to statically infer types [[13]].

For research focusing on type inference, Xu et al. observe
that type hints in Python programs can help infer types of
variables and propose a novel approach of probabilistic type
inference [53]. Gorbovitski er al. propose a flow-sensitive
may-alias analysis based on type inference to optimize the
execution of Python programs [22]. Cannon et al. implement
a type inference algorithm for Python without changing the
semantics of it and study the benefit of adding type annotations
to help type inference [7]. Aycock et al. propose aggressive
type inference, which determine the types of variables in
the absence of explicit cues [5]. Pradel et al. implement
a neural network model with a search based validation to
do type inference on Python projects [33]. Allamanis et al.
address the out of vocabulary problem of type inference
tasks and implement a graph model to further improve the
accuracy [3]. Dash et al. introduce conceptual types which
developers have in mind while writing the program. Variables
with different conceptual types may share the same regular
type. For example, email and url types share string type [9].

VII. CONCLUSION

In this paper, we conduct an empirical study of language
feature usage on 35 Python projects from 8 domains by
designing a tool named PYSCAN to automatically scan lan-
guage features. We observe the following key findings: 1)
Developers tend to use language features on safety check,
testing and some dynamic features while avoiding the use of
complex features which easily lead to errors. 2) Some language
features designed to enhance the safety of Python such as
gradual typing and keyword-only arguments have not been
widely adopted by developers. 3) Developers prefer to define
their own decorators instead of using built-in decorators. 4)
Developers care most about ImportError errors when handling
exceptions. Along with these findings we manually check
using patterns of exception handling, decorators and nested
classes / functions. We believe such findings and patterns can
help Python users better design applications.
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