
An Empirical Study for Common Language 
Features Used in Python Projects

Yun Peng, Yu Zhang*, Mingzhe Hu

University of Science and Technology of China



2

q Python is extremely popular in recent years
nDynamic type system à fast prototyping

nLots of libraries and powerful language features

qHowever, dynamic features have costs:
nPerformance: interpreter à longer execution time

nSafety: dynamic type system à type errors

Background



3

q Numba, a JIT Python compiler aims to
accelerate the execution of Python code

It only supports a subset of Python and many
dynamic features are excluded (e.g. function as
return value)

q Pysonar2, a Python type inference tool

Some dynamic features (e.g. meta-programming)
make it hard for Pysonar2 to statically infer types

Solutions



4

q Current solutions to improve Python’s performance and safety
often encounter new problems or challenges for certain language
features

Question:

qHow are language features distributed in real-world Python
projects?
nWe may not pay many efforts to handle them if they are rarely used…

nIf they are commonly used, how are they used?

Motivation



5

qRQ1: What is the general distribution of language features in 
real-world Python projects?

qRQ2: What are the differences of language feature distribution 
among different domains of Python projects?

qRQ3: Why are certain language features used frequently and how
are they used?

Research Questions



6

6 categories of 22 language features:
q Function: keyword/keyword-only/position-only arguments, multiple return,
etc.

q Type System: first-class function, gradual typing, etc.

q Loop & Evaluation Strategy: loop, generator, etc.

q Object-Oriented Programming: inheritance, encapsulation, etc.

q Data Structure: list comprehension, heterogeneous list, etc.

q Metaprogramming: introspection, reflection, etc.

Language Features



7

Language Features Recognition



8

PYSCAN
A Python language feature scanner



9

DataSet
q 35 popular Python projects from 8 domains at GitHub

q 4 million lines of code and 25 thousand files



10

RQ1: General distribution
Top 5 used:

q Single inheritance

q Decorator

q Keyword argument

q For loop

q Nested class



11

RQ1: General distribution
Least 5 used:

q Position-only argument (0%)

q Heterogeneous list (0.05%)

q Heterogeneous tuple (0.05%)

q Keyword-only argument (0.14%)

q Function as variables (0.26%)

Finding:

Developers of popular Python projects tend to use relatively simple language features
focused on safety checks, testing and some dynamic features, but avoid using those 
complex and error-prone features such as heterogeneous list and tuple.



12

2 Special features:

q Gradual typing (0.6%)
n Aims to enhance type safety

q Keyword-only arguments (0.14%)
n Aims to avoid misuse caused by rapid API changes

RQ1: General distribution

Finding:

Some language features designed to enhance the safety of Python programs are 
not widely used in real-world Python projects.



13

RQ2: Distribution in domains

Used frequently but differently across domains:

Decorator (min: 17.14%à max: 25.68%)

Nested class (min: 14.16%à max: 25.60%)

Exception handling statements (min: 6.74%à max: 16.36%)



14

qDecorator

RQ3: In-depth analysis

Finding:

Developers prefer to define their own decorators instead of using built-in decorators, 
and the former is about 3x of the latter. And the use of @property accounts for 3/4 of 
the total number of built-in decorators.



15

qDecorator

RQ3: In-depth analysis

UP-D1: Set up testing environment

UP-D2: Skip feature in testing

UP-D3: Set inputs for tests

UP-D4: Label deprecated functions

UP-D5: Realize overloading

UP-D6: Convert the types of

arguments

UP-D7: Control compilation

strategy



16

q Exception handling statements

Top 5 Used Errors:
(80% of total usage)

n ImportError

n ValueError

n AttributeError

n KeyError

n OSError

RQ3: In-depth analysis



17

q Exception handling statements

RQ3: In-depth analysis

UP-E1: Differences between

Python versions

UP-E2: Interaction with other

modules or devices

UP-E3: Module importing

UP-E4: Type Conversion

UP-E5: Type Check



18

qNested Class/Function

RQ3: In-depth analysis

UP-N1: Test a certain module

UP-N2: Implement different

parts of a module

UP-N3: Define metadata of a

class

UP-N4: Define frequently used

inner operations



19

q We summarize 22 kinds of common language features, which are divided 
into 6 categories.
n An automatic language feature scanner named PYSCAN

n Analysis of their general distributions, specific distributions across different domains

n In-depth analysis on exception handling statements, decorators and nested 
classes/functions

q We conclude some implications and findings for developers and researchers 
targeting Python from the empirical results

Conclusion



20

Thanks

Q&A


