
Generative Type Inference
for Python
Yun Peng, Chaozheng Wang,

Wenxuan Wang, Cuiyun Gao ∗, Michael R. Lyu

ASE’23

1



Type Inference

1 def add(num1, num2):

2 a = num1 + num2

3 b = 1 + 2

4 return a + b

Parameters:
num1 : ?
num2 : ?
Local Variables:
a : ?
b : ?
Return Value:
add : ?

2



Static Type Inference
____________ ______________

π ⊢ 1 : int π ⊢ 2 : int
(Constant)

π ⊢ 1 : int π ⊢ 2 : int

π ⊢ 1 + 2 : int (Add)

π ⊢ 1 + 2 : int

π ⊢ d : int (Assign)Premise1, …, PremiseN

conclusion

3

1 def add(num1, num2):

2 a = num1 + num2

3 b = 1 + 2

4 return a + b



Static Type Inference

• Very accurate (sound)

• Suffer from the low coverage
problem

4

1 def add(num1, num2):

2 a = num1 + num2

3 b = 1 + 2

4 return a + b

Parameters:
num1 : ?
num2 : ?
Local Variables:
a : ?
b : int
Return Value:
add : ?



Supervised Type Inference

5

1 def add(num1, num2):

2 a = num1 + num2

3 b = 1 + 2

4 return a + b



Supervised Type Inference

• Address the low coverage
problem

• Require high-quality type
annotations to train

6



Cloze-Style Type Inference
1 def add(num1:<mask0>, num2:<mask1>) -> <mask2>:

2 c:<mask3> = num1 + num2

3 d:<mask4> = 1 + 2

4 return c + d

Parameters:
<mask0> (num1) : int
<mask1> (num2) : int

Local Variables:
<mask3> (c) : int
<mask4> (d) : int

Return Value:
<mask2> (add) : int

7



Cloze-Style Type Inference
1 def add(num1:<mask0>, num2:<mask1>) -> <mask2>:

2 c:<mask3> = num1 + num2

3 d:<mask4> = 1 + 2

4 return c + d

• Do not require a high quality training set

• Lack of static domain knowledge:
With knowledge only in the pre-trained code models

• Lack of interpretability:
No idea how the model reaches the prediction

8



TypeGen: Generative Type Inference

9

LLM

Let LLMs act like a static type inference tool!
See what static inference sees, think how static inference thinks.

Input prompt
with static domain
knowledge

Output chain-of-
thought prompt
making predictions



TypeGen: Generative Type Inference

10

Challenge 1: Lack of static domain knowledge

What knowledge should a model have to infer a type for a variable? (See
what static inference sees)

Knowledge 1: The context of the target variable

Parameters, return value, and local variables are defined based on functions.
Therefore, the entire function can be the context.

Intuitive!



The Locality of Type Inference

11

However, not
all statements
in the function
are related to
the target
variable.



Step 1: Code Slicing

12

Source Code Type Dependency Graph



Step 1: Code Slicing

• Remove all statements without data dependencies with the target variable.
• Remove statements with very far data dependencies with the target variable.

13Sliced CodeOriginal Code



TypeGen: Generative Type Inference

14

Challenge 1: Lack of static domain knowledge

What knowledge should a model have to infer a type for a variable?
(See what static inference sees)

Knowledge 1: The context of the variable

Knowledge 2: The valid type set of the variable

Valid type set = built-in types + imported types?



Step 2: Type Hints Collection

Imported types = third-party types + user-defined types

User-defined types:
• Collect all classes in the current source file.

Third-party types:
• Download top 10,000 popular Python packages in Libraries.io.
• Collect all classes and their paths as a third-party type database.
• Query the database based on the import statements in current source file.

15



TypeGen: Generative Type Inference

16

Challenge 1: Lack of static domain knowledge

What knowledge should a model have to infer a type for a variable?
(See what static inference sees)

Knowledge 1: The context of the variable
Knowledge 2: The valid type set of the variable



TypeGen: Generative Type Inference

17

Challenge 2: Lack of Interpretability

How to know/guide the model to reach a type prediction like static inference?
(Think how static inference thinks)

Simulate the inference steps of static inference!



Step 3: Chain-of-Thought Prompt Generation

18

Translate the Type Dependency Graph into a Chain-of-Thought prompt.



Step 3: Chain-of-Thought Prompt Generation

19

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

First, the variable DATABASES is 
assigned from a dict.



Step 3: Chain-of-Thought Prompt Generation

20

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

First, the variable DATABASES is 
assigned from a dict. Second, the
key of the dict is a str. The value 
of the dict is a dict.



Step 3: Chain-of-Thought Prompt Generation

21

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

First, the variable DATABASES is 
assigned from a dict. Second, the
key of the dict is a str. The value 
of the dict is a dict. Third, the keys 
of the dict are a str and a str. The values 
of the dict are a str and a function call 
os.path.join.



Step 3: Chain-of-Thought Prompt Generation

22

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

First, the variable DATABASES is 
assigned from a dict. Second, the
key of the dict is a str. The value 
of the dict is a dict. Third, the keys 
of the dict are a str and a str. The values 
of the dict are a str and a function call 
os.path.join. Therefore, the type of the 
variable DATABASES is `dict[str, 
dict[str, str]]`.



Put ThemAll Together…

23



In-Context Learning

24

Static Analysis
Generated

LLM Predicted



Performance of TypeGen

25



Performance of TypeGen

26

TypeGen is capable of consistently improving 
the zero-shot performance of type inference for 
language models with different parameter 
sizes and achieves 2x ~ 3x of improvements 
made by the Standard ICL setting.



Conclusion

27


